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Abstract 

Background  Gene transcription by RNA polymerase II is a fundamental process in eukaryotic cells. The precise 
regulation of transcription is necessary for cellular growth and development and requires the coordinated activ-
ity of numerous proteins and protein complexes. Although significant progress has been made in understanding 
the mechanisms that regulate transcription, many questions remain unresolved. Accurately defining the direct effects 
of transcriptional regulators is critical to addressing these questions. An effective approach for identifying the direct 
targets of transcriptional regulators is combining rapid protein depletion and quantification of newly synthesized 
RNA. The auxin-inducible degron (AID) system and thiol (SH)-linked alkylation for the metabolic sequencing of RNA 
(SLAM-seq) are powerful methods to rapidly degrade a target protein and directly quantify newly synthesized RNA, 
respectively. Both methods have been widely applied to study transcriptional regulation. To address unresolved ques-
tions in transcription, we assembled an end-to-end workflow to deplete proteins of interest using the AID system 
and measure newly synthesized RNA using SLAM-seq in the model eukaryote, Saccharomyces cerevisiae.

Methods  We provide an open-source, step-by-step protocol to support the rapid implementation of this workflow. 
We include methods for targeted protein degradation, 4-thiouracil (4tU) incorporation, rapid methanol fixation, 
RNA purification, RNA alkylation, 3´ mRNA-seq library construction, and data analysis. Additionally, we demonstrate 
that this workflow can help define the direct effects of transcriptional regulators using the bromodomain and extra-
terminal domain (BET) proteins, Bdf1 and Bdf2, as an example.

Discussion  We demonstrate that data generated using this workflow effectively quantifies 4tU-labeled transcripts 
and is robust to normalization using whole-cell spike-in or, at least in the case of Bdf1 and Bdf2 depletion, total read 
counts. We additionally demonstrate that this data correlates well with 4tU-seq data and identifies extensive differen-
tial expression due to the depletion of Bdf1 and Bdf2. Lastly, the workflow is modular and readily adaptable to other 
systems. Taken together, this workflow and supporting protocol will help address outstanding questions underlying 
the molecular basis of transcriptional regulation and other processes in S. cerevisiae and other eukaryotes.
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Background
Gene transcription by RNA polymerase II (Pol II) is a fun-
damental process in eukaryotic cells. The precise regulation 
of transcription is necessary for cellular growth and devel-
opment and requires the coordinated activity of numerous 
proteins and protein complexes [1, 2]. For example, Pol II 
alone cannot initiate transcription but must cooperate with 
a large set of general transcription factors (GTFs), includ-
ing TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, to per-
form this essential function [2, 3]. In addition to GTFs and 
other basal factors, sequence-specific transcription fac-
tors, transcriptional coactivators, chromatin modifiers, and 
chromatin remodeling factors have critical roles in regu-
lating transcription in response to developmental or envi-
ronmental cues [1, 4–6]. Despite considerable progress in 
understanding the molecular basis of transcriptional regu-
lation, many questions remain unanswered. The budding 
yeast Saccharomyces cerevisiae remains an excellent system 
for addressing unresolved questions in transcription, as the 
underlying biology is broadly conserved across eukaryotes.

Defining the direct effects of transcriptional regula-
tors is critical for elucidating their function [7, 8]. Rapid 
and specific degradation of target proteins is a powerful 
approach for identifying the direct targets of transcrip-
tional regulators. The auxin-inducible degron (AID) sys-
tem is one method for rapid protein degradation widely 
used to study transcriptional regulation in eukaryotes, 
including S. cerevisiae [8–13]. Derived from a plant-spe-
cific module of the conserved eukaryotic SKP1-CUL1-F-
box (SCF) E3 ubiquitin ligase complex, the AID system 
requires the expression of the plant F-box protein TIR1 
and the genetic fusion of an AID tag to a target protein 
to function outside of plants [11]. The addition of the 
plant hormone auxin promotes the association of TIR1 
with the AID tag, recruitment of endogenous SCF com-
plex components, and degradation of the target protein 
via the 26S proteasome. Unlike most classical genetic 
approaches, essential genes or synthetic lethal interac-
tions can be studied using the AID system. We and others 
have used the AID system to achieve specific degrada-
tion of transcription factors, transcriptional coactivators, 
chromatin modifiers, and chromatin remodeling factors 
in S. cerevisiae [10, 12–16].

RNA synthesized immediately following a perturba-
tion, such as rapid protein degradation, more accurately 
reflects the direct effects of the target factor than steady-
state RNA [7, 8, 17]. Several sequencing-based methods 
selectively quantify nascent or newly synthesized RNA 
(reviewed in [18, 19]). These methods use various strate-
gies to track nascent or newly synthesized RNA including 
the isolation of RNA associated with chromatin [20, 21], 
Pol II (e.g., NET-seq and mNET-seq) [22, 23], or transcrip-
tionally competent Pol II (e.g., PRO-seq and ChRO-seq) 

[24, 25] or the isolation of metabolically labeled RNA (e.g., 
4sU-seq, cDTA-seq, and TT-seq) [26–28]. We and others 
have used 4sU-seq and the equivalent method 4tU-seq to 
quantify newly synthesized RNA following targeted pro-
tein depletion in  S. cerevisiae  [10, 14, 29–31]. 4sU-seq 
and 4tU-seq involve labeling newly synthesized RNA with 
4-thiouridine (4sU) or 4-thiouracil (4tU), followed by 
biochemical purification of labeled RNA [10, 26, 32, 33]. 
Alternatively, methods such as SLAM-seq, TUC-seq, and 
TimeLapse-seq avoid biochemical purification by directly 
quantifying 4sU- or 4tU-labeled RNA following chemical 
recoding [7, 34–37]. In SLAM-seq, total RNA is treated 
with the thiol-reactive alkylating reagent iodoacetamide, 
which chemically recodes 4sU- or 4tU-labeled RNA 
and results in the misincorporation of guanosine dur-
ing reverse transcription. Thus, thymine-to-cytosine 
(T > C) conversions define newly synthesized RNA and 
are quantified using dedicated data analysis software 
(e.g., SLAM-DUNK or GRAND-SLAM) or alternative 
approaches [38–41]. SLAM-seq has several advantages 
compared to 4tU-seq, including increased reproducibility 
as the purification of labeled RNA is not required. Addi-
tionally, since SLAM-seq captures both labeled and unla-
beled RNA, read counts derived from newly transcribed 
RNA can be normalized by total read counts (i.e., the 
sum of reads derived from labeled and unlabeled RNA) 
under the assumption that steady-state RNA levels do 
not change considerably during a given perturbation, as 
is frequently the case. Thus, SLAM-seq can circumvent 
the need for external spike-in normalization even when 
global changes in transcription are observed [8, 42, 43]. 
Newly synthesized RNA represents only a small fraction 
of the total RNA pool. As such, a potential limitation of 
SLAM-seq compared to 4tU-seq is a decreased detection 
of very lowly expressed transcripts, although this limita-
tion can be partially bypassed through increased sequenc-
ing depth. SLAM-seq and a version of cDTA-seq using 
iodoacetamide-mediated alkylation of labeled RNA have 
been applied to S. cerevisiae, largely to study the synthesis 
and decay of RNA [16, 38, 44].

Here, we provide an end-to-end workflow for rapidly 
degrading a target protein using the AID system and 
quantifying newly synthesized mRNA using SLAM-seq 
in S. cerevisiae. We include methods for targeted protein 
degradation, 4tU incorporation, rapid methanol fixation, 
RNA purification, RNA alkylation, 3´ mRNA-seq library 
construction, and data analysis. Although the individual 
methods described here are not novel per se, this work-
flow provides the first complete resource for turnkey 
implementation of these methods, which will benefit oth-
ers working with  S. cerevisiae. Additionally, the modu-
lar structure allows individual methods to be replaced 
or removed based on user preference alleviating some 
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limitations to implementing the workflow. Lastly, this 
workflow is readily adaptable to other systems, includ-
ing industrial, pathogenic, or other model fungi, and will 
benefit the larger research community.

Materials and procedure
The protocol described in this peer-reviewed article 
is published on protocols.io, updated May 31, 2024, 
https://​doi.​org/​10.​17504/​proto​cols.​io.​n2bvj​3dj5l​k5/​v4. 
Additional experimental details critical for generating 
results presented in this article are described below.

Strains and culturing conditions
Saccharomyces cerevisiae and Schizosaccharomyces 
pombe strains used in this study are listed in Table 1. 
Strain RDY234 was engineered using standard meth-
ods and validated using PCR and western blotting 
(data not shown). Saccharomyces cerevisiae was grown 
in 40  ml of YPD medium (10  g/l yeast extract, 20  g/l 
peptone, 20  g/l glucose, 20  mg/ml adenine sulfate) at 
30 °C with shaking at 220 rpm. Cultures were grown to 
an OD600 of ~ 0.45 and split into three 10 ml cultures. 
Following brief equilibration, cultures were treated 
with 1 mM 3-indoleacetic acid (IAA) freshly prepared 
in dimethyl sulfoxide (DMSO) or an equivalent volume 
of DMSO, vigorously mixed, and incubated for 25 min 
at 30  °C with shaking at 220  rpm. Immediately after 
IAA treatment, cultures were treated with 5  mM 4tU 
freshly prepared in DMSO or an equivalent volume 
of DMSO, vigorously mixed, and incubated for 4  min 
at 30  °C with shaking at 220  rpm. Immediately after 
4tU treatment, each culture was decanted into 5 ml of 
cold 100% methanol on dry ice. The resulting slurry 
was gently mixed by swirling to ensure homogeniza-
tion and kept on dry ice. An aliquot of the slurry was 
collected for cell counting and western blotting. The 
remaining slurry was centrifuged at 3,000  g and 4  °C 
for 10  min to pellet the cells. Cells were resuspended 
in DNA/RNA shield (Zymo Research, Irvine, CA, 
USA) by pipetting, flash frozen on dry ice, and stored 
at –80  °C. The final OD600 of S. cerevisiae cultures 
was ~ 0.7. Schizosaccharomyces pombe was grown in 
YE medium (5 g/l yeast extract, 30 g/l glucose) at 30 °C 
with shaking at 220  rpm to a final OD600 of ~ 1.0. A 

similar strategy as described for S. cerevisiae was 
used for 4tU labeling and rapid fixation of S. pombe 
cultures. For whole-cell spike-in, S. pombe cells were 
combined with S. cerevisiae cells in a mass-to-mass 
ratio of 1:19 based on OD600. Three biological repli-
cates were collected in all experiments.

RNA alkylation and 3′ mRNA‑sequencing library 
construction
RNA alkylation was performed as previously described 
[7, 16] with minor modifications. A total of 5  μg of 
total RNA in 20 μl of nuclease-free water was used for 
alkylation. 3′ mRNA-sequencing library construction 
is based on previously described methods with modifi-
cations [45, 46]. A total of 200 ng of alkylated RNA in 
5  μl of nuclease-free water was used for library con-
struction. The remaining steps of RNA alkylation and 
library construction are provided in detail in the full 
protocol. Libraries were sequenced on a NovaSeq 6000 
(Illumina, San Diego, CA, USA) at the Oklahoma Medi-
cal Research Foundation (OMRF) Clinical Genomics 
Center (Oklahoma City, OK, USA).

Data analysis
Demultiplexed, paired-end 150  bp reads were preproc-
essed using fastp (version 0.23.2) [47] to extract unique 
molecular identifiers (UMIs) and bbduk from the BBMap 
package (version 39.06) (https://​sourc​eforge.​net/​proje​
cts/​bbmap/) to trim adapter sequences and polyA tails. 
The quality of raw and preprocessed data was assessed 
using FastQC (version 0.12.1) (https://​www.​bioin​forma​
tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/) and complied 
using MultiQC (version 1.21) [48]. When required, 
read depth was adjusted by random subsampling using 
SeqKit2 (version 2.0.1) [49, 50]. Forward reads were pro-
cessed using SLAM-DUNK (version 0.4.3) [40]. Reads 
were aligned against the S. cerevisiae genome (version 
R64-3–1) or the S. pombe genome (version ASM294v2) 
using NextGenMap (version 0.5.5) [51] and single-nucle-
otide polymorphisms (SNPs) were called using VarScan 
2 (version 2.4.5) [52] within SLAM-DUNK. Total read 
counts were defined as all reads remaining after align-
ment filtering and recovery of multimapping reads in 
SLAM-DUNK (Additional file  1B). Unless otherwise 

Table 1  Saccharomyces cerevisiae and Schizosaccharomyces pombe strains used in this study

Strain Species Relevant genotype Reference

RDY73 S. cerevisiae pGPD1-OsTIR1::HIS3 BDF2-3XV5-mAID-kanMX BDF1-3XV5-mAID-URA3 Donczew and Hahn [10]

RDY234 S. cerevisiae pGPD1-OsTIR1::HIS3 BDF2-3XV5-mAID-kanMX BDF1-3XV5-mAID-URA3 pBDF1-
BDF1::TRP1

This study

SHY1058 S. pombe RPB3-3XFLAG-natMX Warfield et al. [13]

https://doi.org/10.17504/protocols.io.n2bvj3dj5lk5/v4
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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indicated, a conversion per read threshold of ≥ 2  T > C 
conversions was used to define T > C read counts (Addi-
tional file 1C). Data analysis is described in detail in the 
full protocol.

To define counting windows in SLAM-DUNK, cus-
tom BED files were created for both S. cerevisiae and 
S. pombe. Open reading frames (ORFs) were extracted 
from the S. cerevisiae annotation (version R64-3–1) 
or the S. pombe annotation (version ASM294v2) using 
BEDOPS (version 2.4.3). Preliminary analyses dem-
onstrated that reads aligned to gene bodies and 3′ 
untranslated regions (UTRs) (data not shown). There-
fore, all ORFs were extended 250 bp beyond their stop 
position to include 3′ UTRs using SAMtools (version 
1.14) and BEDTools (version 2.30.0). Custom BED files 
were deposited in the Zenodo repository (https://​doi.​
org/​10.​5281/​zenodo.​10714​018). Chromosome names 
were modified in the S. cerevisiae reference files (i.e., 
genome assembly and BED file) to reflect standard 
nomenclature [53].

Spike-in normalization factors were calculated as the 
sum of all S. pombe read counts (T > C read counts and 
non-T > C read counts) divided by 1 × 105 (Additional 
file  1D). The factor 1 × 105 was arbitrarily chosen to 
ensure spike-in normalization factors were between one 
and ten. Total counts normalization factors were calcu-
lated as the sum of all S. cerevisiae read counts (T > C 
read counts and non-T > C read counts) divided by 1 × 106 
(Additional file  1D). The factor 1 × 106 was arbitrarily 
chosen to ensure total counts normalization factors were 
between one and ten. Normalization and differential gene 
expression analysis were performed on raw data (total 
read counts or T > C read counts) using DESeq2 (version 
1.38.3) [54]. Adjusted p-values were calculated with inde-
pendent hypothesis weighting using IHW (version 1.26.0) 
[55] within DESeq2. Genes classified as dubious open 
reading frames (ORFs) or pseudogenes or that did not 
meet criteria for fold change and/or p-value calculations 
in DESeq2 were excluded from subsequent analyses. The 
remaining genes were filtered against 5313 genes previ-
ously found to be reliably detected under experimental 
conditions comparable to those used in this study [10], 
leaving 5311 genes. To compare SLAM-seq and 4tU-seq 
data, genes were further filtered against 4883 genes that 
were previously found to provide high reproducibility 
and low information loss in 4tU-seq experiments with 
strain RDY73 [10], leaving 4882 genes. For strict filter-
ing, dubious ORFs and pseudogenes were removed. The 
remaining genes were filtered on the requirement of hav-
ing ≥ one T > C read count across all samples. Data pro-
cessing and plotting were performed using R (version 
4.2.3) (https://​www.R-​proje​ct.​org/) and RStudio (version 
2023.12.0 + 369) (http://​www.​rstud​io.​com/).

General notes and troubleshooting
In the protocol described here, newly transcribed RNA is 
metabolically labeled with 4tU. Both S. cerevisiae and S. 
pombe readily import 4tU without genetic manipulation 
or specific media requirements [56–58]. Although not a 
requirement, previous studies suggest that in certain con-
texts the expression of an additional copy of endogenous 
uridine or uracil permeases (Fui1 and Fur4, respectively) 
or depletion of uracil in growth media can improve 4tU 
incorporation in S. cerevisiae [33]. Previous studies also 
suggest that brief exposure to 4tU at low concentrations, 
such as the conditions used in this protocol, has minimal 
effects on the growth of S. cerevisiae [56, 57], although 
high concentrations or prolonged exposure can be detri-
mental. Relatedly, the auxin, IAA, is used in the described 
protocol to induce protein depletion via an AID system. 
While IAA is known to affect aspects of S. cerevisiae 
biology [59, 60], relatively short exposure to IAA at low 
concentrations is generally considered to have minimal 
effects. As previously suggested, the optimal conditions 
for IAA treatment (e.g., time, concentration) should be 
empirically determined to minimize off-target effects 
[61]. It should also be noted that low levels of depletion 
in the absence of exogenous IAA have been reported for 
some target proteins [62, 63]. Modified AID systems, 
such as the β-est AID, super-sensitive AID, or AID2 sys-
tems [62–64], may reduce off-target effects and, as more 
data emerges for the use of these systems in S. cerevisiae, 
may improve this protocol.

A key step in SLAM-seq is the alkylation of a uracil 
analog (i.e., 4sU or 4tU) incorporated into RNA using 
iodoacetamide [7, 44]. We note that iodoacetamide is 
unstable and light sensitive. Therefore, iodoacetamide 
should be prepared immediately before use and pro-
tected from light [7]. Additionally, alkylation reactions 
should be performed in the dark and simultaneously on 
all samples within an experiment when possible. We 
and others [8] provide data that a conversion per read 
threshold of ≥ 2  T > C conversions effectively reduces 
background signal. However, we recommend that ini-
tial SLAM-seq experiments include an untreated (i.e., 
–4tU) control to assess spurious nucleotide conver-
sions and polymorphisms between experimental and 
reference strains. SLAM-seq quantifies both steady-
state (non-T > C read counts) and newly transcribed 
RNA (T > C read counts) simultaneously [7, 40]. Newly 
transcribed RNA is a small fraction of the total. Similar 
to what others have demonstrated [8, 38], we present 
evidence that SLAM-seq data can be normalized using 
exogenous whole cell spike-in or total read counts 
(i.e., the sum of T > C read counts and non-T > C read 
counts). However, the proposed total read counts nor-
malization strategy is specific for data derived from 

https://doi.org/10.5281/zenodo.10714018
https://doi.org/10.5281/zenodo.10714018
https://www.R-project.org/
http://www.rstudio.com/
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SLAM-seq and related methods (e.g., TimeLapse-seq). 
Additionally, although this strategy works well for 
our example case (Bdf1/2 depletion), it does not sup-
plant spike-in normalization, and we recommend ini-
tially testing total counts normalization in parallel with 
spike-in normalization for different target proteins 
and/or experimental conditions.

Methods that use a template switching oligo (TSO) for 
constructing sequencing libraries, such as that described 
here, often generate forward reads that start with three 
low-diversity bases. It is therefore necessary to increase 
the diversity of the library pool when sequencing on an 
Illumina instrument. A final library pool should contain 
10–15% libraries constructed using standard approaches 
[65] or a control library (e.g., PhiX Control v3; Illumina) 
(see Veeranagouda et  al. [45] for additional details). 
Third, the method for constructing mRNA-seq libraries 
described here supports barcoding in the forward and 
reverse reads, although like many 3′ mRNA-seq methods 
(e.g., QuantSeq FWD; Lexogen, Greenland, NH, USA) 
the reverse read is generally of low quality and provides 
little information beyond barcoding. In our experience, 
paired-end sequencing is more cost-effective than sin-
gle-end sequencing at many service providers. We also 
note that the number of recovered T > C read counts is 
dependent on read length, for example, more T > C read 
counts per gene recovered from 150 bp reads compared 
to 100  bp reads at an equivalent read depth (data not 
shown). Therefore, together with data presented here, 
we recommend sequencing 5 to 10 million paired-end 
150  bp reads per sample depending on the goals of an 
experiment.

Lastly, we anticipate this workflow will be readily 
adapted to other systems. Although we acknowledge 
that some optimization will be necessary depending on 
the system, our data from spike-in, 4tU-labeled S. pombe 
cells suggests this workflow can be directly applied to S. 
pombe. Additionally, using parts of the workflow with-
out modification, we have successfully prepared alkylated 
RNA and 3′ mRNA-seq libraries using 4sU-labeled total 
RNA derived from human cell lines (data not shown).

Expected results
Applying the SLAM‑seq workflow to study transcriptional 
regulation in Saccharomyces cerevisiae
To illustrate expected results, we performed experiments 
with two S. cerevisiae strains (RDY73 and RDY234) related 
to our studies on BET proteins. BET (bromodomain and 
extra-terminal domain) proteins are conserved chroma-
tin readers characterized by two bromodomains and an 
extra-terminal (ET) domain [66]. BET proteins have an 
integral role in transcriptional regulation, although the 

mechanisms by which they regulate transcription are not 
well understood [10, 66–68]. There are two BET proteins 
(Bdf1 and Bdf2, referred to here as Bdf1/2) in S. cerevi-
siae, and deletion of both BDF1 and BDF2 is lethal [69]. 
Although Bdf1 and Bdf2 have overlapping functions, 
the depletion of Bdf1 has a more significant impact on 
global transcription [10]. Strain RDY73 carries a codon-
optimized Oryza sativa TIR1 protein (OsTIR1) [11] and 
mAID-tagged Bdf1/2 and was previously used to study 
changes in transcription after depletion of Bdf1/2 [10]. 
The mAID (miniAID) is a codon-optimized minimum 
region (65–132 aa) of the Arabidopsis thaliana IAA17 
protein [70, 71]. To obtain strain RDY234, an additional, 
unmodified copy of BDF1 driven by its endogenous pro-
moter was integrated at the TRP1 locus in strain RDY73.

In this study, cells of strain RDY73 or RDY234 in 
the logarithmic phase were treated with the auxin 
3-indoleacetic acid (IAA) for 25 min to deplete Bdf1/2 
then treated with 4-thiouracil (4tU) for 4  min to label 
newly synthesized RNA. Immediately after 4tU labe-
ling, cells were rapidly fixed in cold methanol on dry 
ice as described [33, 72–74]. It was previously dem-
onstrated that within this timeframe IAA treatment 
resulted in more than a 90% reduction in the level of 
Bdf1 and an approximately 85% reduction in the level 
of Bdf2 [10]. We observed a similar depletion of Bdf1/2 
by western blotting (data not shown). Subsequently, 
RNA was purified, alkylated, reverse transcribed, and 
sequenced. The resulting data was processed using 
SLAM-DUNK. All experiments were performed in bio-
logical triplicate.

To assess how well our workflow quantifies 4tU-labeled 
transcripts, we first calculated percent conversion rates in 
reads mapped to defined windows. We observed a strong 
and specific accumulation of T > C conversions in 4tU-
treated cells compared to untreated cells (Fig. 1A-B). Sec-
ond, we calculated percent read counts with zero, one, 
or ≥ 2 T > C conversions mapped to defined windows. We 
observed that most reads have zero T > C conversions in 
both 4tU-treated and untreated cells and that, although a 
percentage of reads with one T > C conversion in untreated 
cells was observed, 4tU-treated cells have a much higher 
percentage of reads with one or ≥ 2 T > C conversions com-
pared to untreated cells (Fig. 1C-D). We also calculated the 
percent background signal in reads with ≥ 1 or 2 T > C con-
versions mapped to defined windows. Here, we observed 
a substantially lower percent background signal in reads 
with ≥ 2 T > C conversions compared to reads with ≥ 1 T > C 
conversions (Fig. 1E). Together, these results illustrate that 
our workflow can selectively quantify 4tU-labeled tran-
scripts and that counting reads with ≥ 2 T > C conversions 
effectively reduces background signal.
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Fig. 1  Application of SLAM-seq to Saccharomyces cerevisiae. A Boxplots comparing percent conversion rates in reads mapped to defined windows. 
SLAM-seq data was derived from strain RDY73 treated with ( +) or without ( −) 4-thiouracil (4tU) for 4 min. Mean conversion rates for three biological 
replicates across the indicated number of transcripts (n = 5311) are presented as Tukey boxplots. Outliers are not shown. B Boxplots comparing 
percent conversion rates in reads mapped to defined windows. SLAM-seq data was derived from strain RDY234 treated with ( +) or without ( −) 
4tU for 4 min. Mean conversion rates for three biological replicates across the indicated number of transcripts (n = 5311) are presented as Tukey 
boxplots. Outliers are not shown. C Barplots comparing percent read counts with 0, 1, or ≥ 2 T > C conversions mapped to defined windows. 
SLAM-seq data was derived from strain RDY73 treated with ( +) or without ( −) 4tU for 4 min. Mean values for biological replicates (n = 3) are 
plotted. Error bars represent the standard deviation of the mean. The y-axis begins at 70 percent. D Barplots comparing percent read counts 
with 0, 1, or ≥ 2 T > C conversions mapped to defined windows. SLAM-seq data was derived from strain RDY234 treated with ( +) or without ( −) 4tU 
for 4 min. Mean values for biological replicates (n = 3) are plotted. Error bars represent the standard deviation of the mean. The y-axis begins at 70 
percent. E Boxplots comparing percent background signal in reads with ≥ 1 or 2 T > C conversions mapped to defined windows. SLAM-seq data 
was derived from strains RDY73 or RDY234 treated with ( +) or without ( −) 4tU for 4 min. Mean background signals for three biological replicates 
across the indicated number of transcripts (n = 5311) are presented as Tukey boxplots. Outliers are not shown



Page 7 of 13Ridenour and Donczew ﻿BMC Methods             (2024) 1:8 	

SLAM‑seq detects global transcriptional changes 
associated with rapid depletion of Bdf1/2 and is robust 
to normalization using whole‑cell spike‑in or total read 
counts
Normalization by whole‑cell spike‑in
In SLAM-seq experiments, we performed whole-cell 
spike-in normalization using 4tU-labeled S. pombe cells 
as previously described [10, 14]. Here, we calculated 

spike-in normalization factors based on S. pombe total 
read counts. We then used the spike-in normalization 
factors to normalize (1) total read counts or (2) T > C 
read counts in DESeq2 (Additional file 1E-G). Interest-
ingly, we observed a global loss of transcription follow-
ing Bdf1/2 depletion for both spike-in normalized total 
read counts and spike-in normalized T > C read counts 
derived from strain RDY73 (Fig.  2A-B). These results 

Fig. 2  SLAM-seq detects global transcriptional changes associated with rapid depletion of Bdf1/2. A Scatterplot comparing log2 fold change 
in transcription and log10 baseline transcription following Bdf1/2 depletion (strain RDY73) across the indicated number of transcripts (n = 5311). 
Total read counts were normalized using size factors calculated on total read counts from exogenous whole cell spike-in. Mean values for three 
biological replicates are plotted. B Scatterplot comparing log2 fold change in transcription and log10 baseline transcription following Bdf1/2 
depletion (strain RDY73) across the indicated number of transcripts (n = 5311). T > C read counts were normalized using size factors calculated 
on total read counts from exogenous whole cell spike-in. Mean values for three biological replicates are plotted. C Boxplots comparing log2 fold 
changes in transcription following Bdf1/2 depletion (strain RDY73) normalized using exogenous whole cell spike-in. Mean changes in transcription 
for three biological replicates across 5311 transcripts are presented as Tukey boxplots. D Scatterplot comparing log2 fold change in transcription 
and log10 baseline transcription following Bdf1/2 depletion in a strain ectopically expressing BDF1 (RDY234) across the indicated number 
of transcripts (n = 5311). Total read counts were normalized using size factors calculated on total read counts from exogenous whole cell spike-in. 
Mean values for three biological replicates are plotted. E Scatterplot comparing log2 fold change in transcription and log10 baseline transcription 
following Bdf1/2 depletion in a strain ectopically expressing BDF1 (RDY234) across the indicated number of transcripts (n = 5311). T > C read counts 
were normalized using size factors calculated on total read counts from exogenous whole cell spike-in. Mean values for three biological replicates 
are plotted. F Boxplots comparing log2 fold changes in transcription following Bdf1/2 depletion in a strain ectopically expressing BDF1 (RDY234) 
normalized using exogenous whole cell spike-in. Mean changes in transcription for three biological replicates across 5311 transcripts are presented 
as Tukey boxplots
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indicate that substantial changes in transcription are 
already apparent in steady-state RNA 30  min after 
inducing Bdf1/2 depletion. However, the magnitude 
of the transcriptional changes is much more dramatic 
in newly synthesized RNA compared to steady-state 
RNA (Fig.  2C). We did not observe global changes 
in transcription for either spike-in normalized total 
read counts or spike-in normalized T > C read counts 
derived from strain RDY234 (Fig.  2D-F), indicating 
that ectopically expressed BDF1 largely complements 
depletion of endogenous Bdf1/2. Together, these results 
illustrate the importance of measuring newly synthe-
sized RNA to study the direct effects of a perturbation 
such as rapid protein depletion.

We additionally tested normalization using S. pombe 
reads with ≥ 2  T > C conversions rather than total S. 
pombe reads, though no substantial benefit was found 
using this approach (data not shown). However, as a gen-
eral consideration, we note that 4tU-labeled spike-in may 
be needed to control for alkylation efficiency if samples 
within an experimental set are independently treated 
with iodoacetamide or if samples will also be used for 
methods that rely on the enrichment of labeled RNA 
(e.g., 4tU-seq or TT-SLAM-seq [14, 75]).

Normalization by total read counts
In previous studies, SLAM-seq data has been normal-
ized using total read counts rather than whole-cell 
spike-in [8, 42, 43]. These studies demonstrated that 
normalizing T > C read count data by total read count 
data is a robust approach even when global changes in 
transcription are observed. A similar normalization 
strategy has also been proposed for TimeLapse-seq data 
[36]. In addition, potential issues with spike-in normali-
zation have been noted [76, 77]. Therefore, we tested a 
normalization approach using total read counts to cir-
cumvent the need for whole-cell spike-in and streamline 
our workflow.

Previous studies used DESeq2 to calculate size fac-
tors based on total read counts. Total read counts were 
defined as the sum of T > C read counts and non-T > C 
read counts following alignment and filtering. The 
DESeq2 size factors were then used to normalize T > C 
read counts. We initially applied this approach to data 
derived from strain RDY73. We observed a global 
loss of transcription following Bdf1/2 depletion for 
DESeq2 normalized T > C read counts (Fig. 3A). How-
ever, the magnitude of these changes was less than 
what we observed for spike-in normalized T > C read 
counts (Fig.  2B). The median-ratio method imple-
mented by DESeq2 to estimate size factors assumes 
that the expression of most genes is not affected by 

experimental conditions [54]. However, previous work 
has demonstrated that depletion of Bdf1/2 results 
in global changes in newly transcribed mRNA [10]. 
Here, we demonstrate that depletion of Bdf1/2 results 
in substantial changes in steady-state mRNA within 
30 min (Fig. 2A). Thus, we presume that the extent to 
which Bdf1/2 depletion affects newly transcribed and 
steady-state mRNA violates assumptions underlying 
DESeq2 calculations and that, although DESeq2 size 
factors (calculated on total read counts) can be used 
to effectively normalize SLAM-seq data in certain con-
texts (i.e., mammalian cells), this approach does not 
recapitulate the results we observed using exogenous 
whole cell spike-in (Fig.  2B). Although not tested in 
this study, we note that other strategies for calculat-
ing size factors can be implemented in DESeq2, such 
as calculating size factors on a subset of control genes 
expected to be stably expressed across all samples in a 
given experiment.

Based on these results, we reasoned that an alterna-
tive normalization approach using total read counts 
might yield better results for a rapidly dividing organ-
ism like S. cerevisiae. Thus, we calculated normaliza-
tion factors based on total read counts for each sample 
(see Materials and Procedure). We then used these 
total counts normalization factors to normalize T > C 
read counts in DESeq2 (Additional file 1H-I). Using this 
approach, we again observed a global loss of transcrip-
tion following Bdf1/2 depletion (Fig. 3B). However, the 
magnitude of transcriptional changes was more dra-
matic when T > C read counts were normalized by total 
counts normalization factors compared to DESeq2 size 
factors. This was more apparent when DESeq2 or total 
counts normalized T > C read counts were compared 
to spike-in normalized T > C read counts (Fig.  3C-D). 
Notably, only a minimal shift in read counts per gene 
was observed for total counts normalized T > C read 
counts compared to spike-in normalized T > C read 
counts (Fig.  3D). Together, these results illustrate that 
SLAM-seq data derived from S. cerevisiae can be reli-
ably normalized using normalization factors derived 
from total read counts.

SLAM‑seq correlates well with 4tU‑seq and identifies 
extensive differential expression following depletion 
of Bdf1/2
Next, we compared our SLAM-seq data (spike-in or 
total counts normalized T > C read counts) to pub-
lished 4tU-seq data derived from strain RDY73 under 
comparable experimental conditions [10]. A strik-
ing loss of transcription is apparent in the data from 
both SLAM-seq (Fig.  2B; Fig.  3B) and 4tU-seq [10]. 
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Comparing the change in transcription across the 
two datasets, we observe a strong correlation between 
SLAM-seq and 4tU-seq data (Fig. 4A and C). Further-
more, we observed extensive differential expression 
following Bdf1/2 depletion (Fig.  4B). For example, 
we detected six upregulated genes and 3425 down-
regulated genes for spike-in normalized T > C read 
counts using a false discovery rate (FDR) adjusted 
p-value ≤ 0.05 and log2 fold change ≥|1| as cutoffs 
(Fig.  4B). Additionally, we detected eight upregulated 
genes and 2622 downregulated genes for total counts 
normalized T > C read counts using the same cutoffs 
(Fig.  4D). Together, these results illustrate a strong 
correlation between SLAM-seq and 4tU-seq data and 

demonstrate that our workflow can help define the 
direct targets of transcriptional regulators such as 
Bdf1/2 using either spike-in or total counts normaliza-
tion strategies.

Lastly, we compared how the number of genes recov-
ered by SLAM-seq correlates with read depth. Here, we 
randomly subsampled SLAM-seq data derived from 
strain RDY73. After processing subsampled data using 
SLAM-DUNK, we calculated spike-in normalization fac-
tors based on S. pombe total read counts and used the 
spike-in normalization factors to normalize T > C read 
counts in DESeq2. Results were then filtered using relaxed 
or strict criteria (see Materials and Procedure). Unsur-
prisingly, the number of genes we could reliably quantify 

Fig. 3  SLAM-seq is robust to normalization using total read counts. A Scatterplot comparing log2 fold change in transcription and log10 baseline 
transcription following Bdf1/2 depletion across the indicated number of transcripts (n = 5311). T > C read counts were normalized using size factors 
estimated on total read counts using DESeq2. Mean values for three biological replicates are plotted. B Scatterplot comparing log2 fold change 
in transcription and log10 baseline transcription following Bdf1/2 depletion across the indicated number of transcripts (n = 5311). T > C read counts 
were normalized using size factors calculated on total read counts. Mean values for three biological replicates are plotted. C Scatterplot comparing 
log2 fold change in transcription following Bdf1/2 depletion determined across 5311 transcripts. T > C read counts were normalized using size 
factors estimated on total read counts using DESeq2 or normalized using size factors calculated on total read counts from exogenous whole cell 
spike-in. Spearman’s correlation coefficient (rs) is shown. D Scatterplot comparing log2 fold change in transcription following Bdf1/2 depletion 
determined across 5311 transcripts. T > C read counts were normalized size factors calculated on total read counts or size factors calculated on total 
read counts from exogenous whole cell spike-in. Spearman’s correlation coefficient (rs) is shown
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decreased with read depth, which was most apparent 
when “strict” filtering was applied (Fig. 5). However, these 
results demonstrate that our workflow recovers a substan-
tial number of protein-coding genes. For example, when 
we subsampled 5.5 million reads per sample, we recov-
ered 5273 genes using “relaxed” filtering criteria and 3428 
genes using “strict” filtering criteria, representing approxi-
mately 87 percent or 57 percent of protein-coding genes, 
respectively (Fig. 5; Additional file 1J).

Conclusions
We provide an end-to-end workflow for rapid and spe-
cific protein degradation using the AID system and 
selective quantification of newly synthesized RNA using 
SLAM-seq in S. cerevisiae. The workflow builds on estab-
lished methods to provide a complete resource for imple-
mentation. We demonstrate that the workflow can help 
define the direct effects of transcriptional regulators 
using the BET proteins Bdf1/2 as an example. Together, 
this workflow will help address outstanding questions 

Fig. 4  SLAM-seq correlates well with 4tU-seq and identifies extensive differential expression following Bdf1/2 depletion. A Scatterplot 
comparing log2 fold change in transcription following Bdf1/2 depletion determined using SLAM-seq or 4tU-seq across 4882 transcripts. T > C 
read counts derived from SLAM-seq were normalized using size factors calculated on total read counts from exogenous whole cell spike-in. 
Mean values for three biological replicates are plotted. Read counts derived from previously published 4tU-seq data were normalized using 
size factors calculated on total read counts from exogenous whole cell spike-in. Spearman’s correlation coefficient (rs) is shown. B Volcano plot 
comparing − log10 false discovery rate (FDR) adjusted p-value and log2 fold change in transcription following Bdf1/2 depletion across 5311 
transcripts. T > C read counts were normalized using size factors calculated on total read counts from exogenous whole cell spike-in. Mean 
values for three biological replicates are plotted. Differentially expressed genes are defined using an FDR adjusted p-value ≤ 0.05 and log2 fold 
change ≥|1| as cutoffs. Numbers of differentially expressed genes are shown in respective regions of the plot. C Scatterplot comparing log2 fold 
change in transcription following Bdf1/2 depletion determined using SLAM-seq or 4tU-seq across 4882 transcripts. T > C read counts derived 
from SLAM-seq were normalized size factors calculated on total read counts. Mean values for three biological replicates are plotted. Read counts 
derived from previously published 4tU-seq data were normalized using size factors calculated on total read counts from exogenous whole cell 
spike-in. Spearman’s correlation coefficient (rs) is shown. D Volcano plot comparing − log10 false discovery rate (FDR) adjusted p-value and log2 fold 
change in transcription following Bdf1/2 depletion across 5311 transcripts. T > C read counts were normalized using size factors calculated on total 
read counts. Mean values for three biological replicates are plotted. Differentially expressed genes are defined using an FDR adjusted p-value ≤ 0.05 
and log2 fold change ≥|1| as cutoffs. Numbers of differentially expressed genes are shown in respective regions of the plot
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underlying the molecular basis of transcription and other 
biological processes in  S. cerevisiae. In addition, this 
workflow is readily adaptable to other systems and will 
benefit the larger research community.
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