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METHODOLOGY

Toward generalizable phenotype prediction 
from single-cell morphology representations
Jenna Tomkinson1†, Roshan Kern1,2†, Cameron Mattson1 and Gregory P. Way1*   

Abstract 

Background Functional cell processes (e.g., molecular signaling, response to stimuli, mitosis, etc.) impact cell phe-
notypes, which scientists can measure with cell morphology. However, linking these measurements with phenotypes 
remains challenging because it requires manually annotated labels. We propose that nuclear morphology can be 
a predictive marker for cell phenotypes that are generalizable across contexts.

Methods We reanalyzed a pre-labeled, publicly-available nucleus microscopy dataset from the MitoCheck consor-
tium. We extracted single-cell morphology features using CellProfiler and DeepProfiler, which provide robust process-
ing pipelines. We trained multinomial, multi-class elastic-net logistic regression models to classify nuclei into one 
of 15 phenotypes such as ‘Anaphase,’ ‘Apoptosis’, and ‘Binuclear’. We rigorously assessed performance using F1 scores, 
precision-recall curves, and a leave-one-image-out (LOIO) cross-validation analysis. In LOIO, we retrained models 
using cells from every image except one and predicted phenotype in the held-out image, repeating this procedure 
for all images. We evaluated each morphology feature space, a concatenated feature space, and several feature space 
subsets (e.g., nuclei AreaShape features only). We applied models to the Joint Undertaking in Morphological Profiling 
(JUMP) data to assess performance using a different dataset.

Results In a held-out test set, we observed an overall F1 score of 0.84. Individual phenotype scores ranged from 0.64 
(moderate performance) to 0.99 (high performance). Phenotypes such as ‘Elongated’, ‘Metaphase’, and ‘Apoptosis’ 
showed high performance. While CellProfiler and DeepProfiler features were generally equally effective, concatena-
tion yielded the best results for 9/15 phenotypes. LOIO showed a performance decline, indicating our model could 
not reliably predict phenotypes in new images. Poor performance was unrelated to illumination correction or model 
selection. Applied to the JUMP data, models trained using nuclear AreaShape features only increased alignment 
with the annotated MitoCheck data (based on UMAP space). This approach implicated many chemical and genetic 
perturbations known to be associated with specific phenotypes.

Discussion Poor LOIO performance demonstrates challenges of single-cell phenotype prediction in new datasets. 
We propose several strategies that could pave the way for more generalizable methods in single-cell phenotype pre-
diction, which is a step toward morphology representation ontologies that would aid in cross-dataset interpretability.

Keywords High content microscopy, Single-cell phenotype, Image-based profiling, Machine learning, CellProfiler 
analysis
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Introduction
Cell phenotypes are inherently dynamic, influenced by 
genetics, environmental factors, and intercellular inter-
actions. These phenotypes change during important cell 
processes such as division, differentiation, disease, and 
death. Furthermore, scientists can induce phenotypic 
changes through chemical or genetic perturbation to 
uncover drug mechanisms or understand fundamental 
biological functions [1, 2]. These explorations often use 
a bioinformatics technique known as image-based profil-
ing [3–6], which extracts cell morphology—unbiased cell 
state indicators of single-cell shapes, sizes, and intensity 
patterns—using feature extraction software, such as Cell-
Profiler [7], DeepProfiler [8], and other bespoke methods 
[9, 10]. Despite these advances, accurately linking mor-
phology to specific phenotypes poses a significant chal-
lenge, primarily due to the need for a priori annotation.

Researchers traditionally perform image-based pro-
filing by aggregating every cell per well to create bulk 
profiles [11]. These bulk profiles overlook heterogeneity 
between single cells, but they eliminate outliers and make 
data more manageable. Bulk image-based profiling pro-
vides morphology information that describes important 
general readouts such as cell health, cell death, and chem-
ical toxicity [12–14]. In contrast, single-cell morphology 
profiles provide an opportunity for single-cell pheno-
type prediction, which various groups have attempted. 
For example, Neuman et  al. extracted 190 single-cell 
features and trained a support vector machine (SVM) 
to predict 16 single-cell phenotypes with 87% training 
set accuracy. [15] Additionally, Harder et  al. trained an 
SVM with a Gaussian Radial Basis Function (RBF) ker-
nel to predict four phenotype categories from nuclei 
images with 96% test set accuracy. [16] Other approaches 
incorporate time-lapse information, which models the 
likelihood of cell state transitions and improves perfor-
mance [17–19]. Scientists have also applied deep learn-
ing to microscopy images directly to predict single-cell 
phenotypes (reviewed in Pratapa et al. [20]), most often 
using convolutional neural networks [21] or autoencod-
ers [22]. However, these approaches do not rigorously 
test the generalizability of single-cell phenotype predic-
tion in new datasets. Other approaches have success-
fully mapped bulk signatures across datasets, but these 
primarily focus on linking perturbation signatures rather 
than individual single-cell phenotypes [23–26]. In this 
work, we sought to overcome this challenge by develop-
ing an evaluation approach to test the generalizability 
of single-cell phenotype prediction across datasets. To 
maximize generalizability, we trained machine learning 
models using readily available and reproducible CellPro-
filer and DeepProfiler features to predict single-cell phe-
notypes from nucleus features alone.

We used the MitoCheck dataset, which includes nuclei 
imaging of HeLa cells manually labeled into one of 15 
phenotypes [15]. We trained and extensively evalu-
ated a multi-class elastic net logistic regression classi-
fier through rigorous benchmarking. We found that our 
model could accurately predict phenotypes using tradi-
tional and deep learning feature extraction methods. The 
CellProfiler features slightly outperformed DeepProfiler 
features, but most top-performing models included both 
feature spaces. Despite achieving a high F1 score in held-
out test sets for most phenotypes, our model performed 
remarkably poorly in a systematic leave-one-image-out 
(LOIO) analysis, which was not explained by illumination 
correction or model selection. We nevertheless modi-
fied and applied our approach to the publicly available 
JUMP Cell Painting dataset (CPJUMP1) [27]. We dis-
covered that AreaShape features, and not those based on 
stain intensity, were resilient to dataset-specific biases. 
We predicted phenotypes in all CPJUMP1 single-cells 
and validated several perturbations with known pheno-
typic consequences. Overall, this work highlights the dif-
ficulties in generalizing single-cell phenotype predictions 
across datasets but suggests benchmarks and approaches 
to determine when effective generalization is achieved.

Results
Extracting morphology representations of phenotypically 
labeled nuclei
We analyzed a time-lapse fluorescence microscopy 
dataset called MitoCheck [15]. The data include GFP-
tagged nuclei of HeLa cells perturbed with small inter-
fering RNA (siRNAs) to silence approximately 21,000 
protein-coding genes. The MitoCheck consortium’s goal 
was to learn the mitotic function of genes by observ-
ing the mitotic consequences when they are knocked 
down. However, this work accomplished much more; it 
provided a publicly accessible microscopy dataset with 
high-quality annotations for 3,277 cells, each exhibit-
ing one of 16 distinct phenotypes. It also contributed to 
growing cell phenotype resources, such as the Cellular 
Microscopy Phenotype Ontology [28], which provides 
API access to ontologies that link genes to phenotypes. 
After we acquired the MitoCheck data from Image Data 
Resource (IDR), a public repository hosting extensive 
microscopy datasets, we had annotations for 2,862 cells 
from 15 distinct phenotypes (dropping the ‘Folded’ phe-
notype) that are grouped into five distinct phenotype cat-
egories (Fig. 1A). We processed and analyzed this labeled 
data to train supervised machine learning models. Spe-
cifically, we applied image analysis, image-based profil-
ing, and machine learning pipelines to process, extract, 
and analyze high-dimensional morphology features from 
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MitoCheck nuclei to assess generalizable phenotype pre-
dictions (Fig. 1B).

We developed software called IDR_Stream to process 
MitoCheck data. IDR_Stream retrieves, and processes 
microscopy datasets directly from IDR, including Mito-
Check [29]. IDR_Stream does not store raw data and 
other large intermediate files on disk, instead processing 
data in five steps: (1) temporarily downloading an image 
batch, (2) applying illumination correction with PyBa-
SiC [30], (3) segmenting nuclei with Cellpose [31], (4) 

extracting nuclei morphology features using both Cell-
Profiler [7] and DeepProfiler [8], and (5) processing these 
morphology features using pycytominer [32] (Supple-
mentary Fig. 1; see Methods for more details). We used 
IDR_stream to extract 157 nuclei morphology features 
using CellProfiler and 1,280 features using DeepProfiler 
from all 2,862 labeled nuclei. We also used IDR_stream 
to process 779,993 negative control nuclei from Mito-
Check, which we used to normalize the 2,862 labeled 
nuclei. We selected these nuclei randomly to represent an 

Fig. 1 Dataset and analysis approach. A Single-cell counts per labeled phenotype stratified by phenotype category. The labeled MitoCheck 
dataset included a total of 2,862 single nuclei. The original dataset contained labels for 16 classes, but we have removed “folded” because of low 
counts. B Our analysis pipeline incorporated image analysis, image-based profiling, and machine learning. We also assess model generalizability 
through a leave-one-image-out analysis and apply our models to the Joint Undertaking in Morphological Profiling Cell Painting (CPJUMP1) pilot 
dataset
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expected distribution of all phenotypes; therefore, most 
are likely in interphase, but they are all without anno-
tated phenotypes.

Evaluating heterogeneity of morphology feature spaces 
based on phenotypes
To broadly assess the relationships between single cells 
based on phenotypic class, we generated Uniform Mani-
fold Approximation (UMAP) [33] embeddings from the 
nuclei morphology readouts from CellProfiler, Deep-
Profiler, and concatenated data (Fig. 2A). We found that 

for all feature datasets, ‘OutofFocus’ single cells (dark 
red) showed the most distinct islands. By eye, CellPro-
filer features demonstrated the most heterogeneity in 
UMAP space (more than DeepProfiler), particularly for 
select phenotypes (e.g., ‘Elongated’, ‘Large’, and ‘Meta-
phase’). Other phenotypes were less distinct across all 
feature spaces (Supplementary Fig. 2). To quantify these 
observations, we calculated Silhouette scores [34] to 
report how much each feature space separated each phe-
notype. Indeed, CellProfiler had the highest Silhouette 
scores (0.53 total for all phenotypes), but DeepProfiler 

Fig. 2 Some cell phenotypes are distinct, while others are more similar. A Fitting three Uniform Manifold Approximations (UMAPs) per feature space 
(CellProfiler [CP], DeepProfiler [DP], and Combined [CP and DP]) shows distinct clustering of some but not all phenotypes. B Many phenotypic 
classes have highly correlated cell features, while others have low correlations compared to cells of different phenotypes
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(0.18 total) had the highest scores for some phenotypes 
(Supplementary Fig.  3). We also generated embeddings 
using T-distributed Stochastic Neighbor Embedding 
(t-SNE) [35], which showed similar results as UMAP 
(Supplementary Fig. 4). Although the UMAP and t-SNE 
analyses indicated phenotype homogeneity, nuclei of the 
same phenotype had higher pairwise correlations than 
those of different phenotypes (Fig.  2B). However, inter-
phase nuclei showed low pairwise correlations, likely due 
to normalization against negative controls containing 
mostly interphase nuclei (Fig.  2B). CellProfiler features 
showed the highest pairwise correlations of same-phe-
notype cells compared to cells of different phenotypes 
(Supplementary Fig.  5A). All other phenotypes showed 
variable but generally high pairwise correlations (Supple-
mentary Fig. 5B). Based on these analyses, we expect that 
classifying most single-cell phenotypes is feasible but will 
likely only use a small subset of informative features.

Multi‑class machine learning models classify single‑cell 
phenotypes
We trained and rigorously evaluated multi-class machine 
learning models to predict the 15 single-cell phenotypes 
using single-cell morphology features extracted from 
MitoCheck data. We randomly split 85% of the data 
(evenly balanced by phenotype) into a training set and 
kept 15% as a test set for evaluation. We trained three 
independent models using each feature space individually 
(CellProfiler and DeepProfiler) and both feature spaces 
concatenated (CP and DP). We also separately trained 
“shuffled baseline” versions to serve as a random chance 
baseline in our evaluations.

Confusion matrices of the held-out test set data 
demonstrated strong performance across phenotypes 
(Fig.  3A). The performance based on precision-recall 
curves was also generally high, although the training set 
had nearly perfect performance, indicating some overfit-
ting. The “shuffled baseline” models performed poorly, 
indicating that different class sizes or other technical arti-
facts did not bias our model training procedure (Fig. 3B). 
The combined CellProfiler and DeepProfiler dataset most 
accurately predicted phenotype for 9 out of 15 models 
and was top overall with an F1 score of 0.84 (Fig.  3C). 
CellProfiler features had top performance for 2/15 mod-
els (‘Interphase’, ‘Elongated’), while DeepProfiler features 
also had top performance for 4/15 different models (‘Out-
OfFocus’, ‘Large’, ‘Anaphase’, ‘ADCCM’). ‘ADCCM’ rep-
resents a phenotype class grouping artifacts, dynamic/
folded, condensed, and other phenotypes [15].

We analyzed the machine learning coefficients from the 
multi-class models used to make phenotypic class pre-
dictions. The models generally used different features to 
predict each phenotype, indicating that most phenotypes 

can be explained by a unique set of nuclei measurements 
(Supplementary Fig.  6). We also trained and evaluated 
binary classification models to predict each phenotype 
individually, but these models demonstrated relatively 
poor performance in the test set compared to multi-class 
models (Supplementary Fig. 7). We expect this poor per-
formance in our binary classification models to be driven 
by high phenotypic heterogeneity in the negative classes 
[36]. We therefore continue with a multi-class classifica-
tion approach in subsequent analyses.

Leave‑one‑image‑out analysis demonstrates poor 
generalizability
We performed a leave-one-image-out (LOIO) analysis 
to systematically test how our model generalizes to new 
images. Specifically, we retrained multi-class models 
using cells from every image except one, predicted sin-
gle-cell phenotypes in the held-out image, and repeated 
this procedure for all 270 images (most images had many 
annotated single cells). While the test set performance 
was high (see Fig.  3), predictions in most individual 
images were poor. For each feature space, the prediction 
of the top-ranking phenotype by probability was often 
incorrect (Supplementary Fig.  8A). We observed, on 
average, correct phenotype predictions in only 22% to 
26% of held-out images, with many phenotypes perform-
ing worse (Fig. 4A). In an attempt to minimize false posi-
tives, we set a high probability threshold (p >  = 0.9) for 
phenotype assignment, but we still observed many high-
confidence incorrect predictions, albeit at lower propor-
tions (Fig. 4B). Additionally, the incorrect predictions did 
not align with broader phenotypic categories (Fig.  4C). 
Poor LOIO performance was not a result of illumina-
tion correction, which we hypothesized could have intro-
duced technical effects given our batched IDR_stream 
image processing, nor our decision to balance models 
by uneven class distributions (Supplementary Fig.  8B). 
Given that the LOIO images were collected in the same 
experiment, we doubted that models would generalize 
to new datasets collected in entirely different experi-
mental settings. Nevertheless, we applied our models to 
the publicly available JUMP Cell Painting dataset (Joint 
Undertaking in Morphological Profiling; CPJUMP1) [27] 
to better understand model pitfalls and to work toward 
generalizable morphology annotation.

Single‑cell phenotypic profiling in the CPJUMP1 dataset
The JUMP Cell Painting consortium released their pilot 
data (cpg0000) publicly. This dataset includes extracted 
CellProfiler features from perturbed A549 and U2OS 
cells with 303 chemical compounds, 335 Clustered 
Regularly Interspaced Short Palindromic Repeats 
(CRISPR) knockouts (targeting 175 unique genes), and 
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175 overexpression open reading frame (ORF) reagents 
at two time points (short and longer incubation time) 
[27]. CPJUMP1 used the full Cell Painting panel, but we 
focused on analyzing the Hoechst nuclei stain to align 
with the MitoCheck GFP nuclei stain. We designed 
experiments to test if our phenotypic profiling model 
generalizes to data collected in an entirely different 
microscopy experiment in different cell lines with dif-
ferent stains collected over 15 years apart.

We began our investigation by aligning the MitoCheck 
features with CPJUMP1’s precomputed CellProfiler 
nuclei features. Applying UMAP to this unified space 
demonstrated low sample overlap, suggesting large dif-
ferences between the two feature spaces (Fig.  5A). We 
posited that technical parameters, including microscope 
acquisition and fluorescence staining, accounted for 
these observed differences. This would suggest that shape 
and area-based parameters are less affected by technical 

Fig. 3 Evaluating multi-class predictions of single-cell phenotypes within the MitoCheck dataset. A Confusion matrices comparing models trained 
on real data vs. shuffled data. The number in each box represents the total count, and the color represents the ratio of count over the ground truth 
label. All data show test set performance. B Precision recall curves for all 15 phenotypes. The shuffled baseline models (dashed line) performed 
poorly for all phenotypic classes. C F1 scores for test set predictions for 15 phenotypes and overall performance
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variations and better facilitate data integration. We sys-
tematically tested all CellProfiler features to identify 
which features were most different between the two data-
sets and confirmed that AreaShape features are the least 
different (Supplementary Fig.  9A). Within AreaShape 
features, we noted that Zernike features had the low-
est difference (Supplementary Fig.  9B) and shared simi-
lar variance between datasets (Supplementary Fig.  9C). 
After dropping all other features (intensity-based fea-
tures) and applying UMAP again, we observed a higher 
dataset overlap (Fig. 5B).

We retrained our multi-class logistic regression clas-
sifier using two additional feature subsets: AreaShape 
features and Zernike features only. As expected, we 
observed a drop in performance in predicting single-cell 
MitoCheck phenotypes, particularly for models trained 
using Zernike features only (Supplementary Fig.  10). 
However, given the misalignment of other features, we 

applied the higher-performing AreaShape model to all 
20,959,860 single cells in the CPJUMP1 pilot. This pro-
cedure annotated all CPJUMP1 single-cells to phenotype 
probabilities.

Per phenotype and plate, we compared phenotype pre-
diction probability distributions of negative controls to 
each treatment. We applied a two-sample Kolmogorov–
Smirnov test (KS test) to these distributions to deter-
mine the enrichment of specific phenotypes in specific 
treatments compared to negative controls. We repeated 
this procedure for negative control models trained with 
randomly shuffled features. This resulted in 485,370 
comparisons. We report the top 100 most enriched treat-
ments per phenotype in Supplementary Table 1 and the 
full list in our GitHub repository. Generally, we observed 
higher phenotype enrichments for compound treat-
ments than CRISPR or ORF, and shorter-duration incu-
bation displayed a higher divergence across cell types 

Fig. 4 A Leave-One-Image-Out (LOIO) analysis demonstrated unexpectedly poor performance. A Per-image LOIO results across feature spaces 
and select phenotypes. The dotted red line indicates rank two, indicating, on average, images with accurate phenotype labeling (most images 
have more than one annotated single cell). The text represents the number of images in the LOIO left out set with average predictions below rank 
two (high performance) for a given phenotype. B Setting a high probability threshold (p > 0.9) for calling single-cell phenotypes does not improve 
prediction reliability. The left set of bars indicates single cells that our model predicted correctly, while the right set of bars indicates incorrect 
single-cell predictions. Even for incorrect predictions, many individual single cells still pass a strict probability threshold (e.g., we incorrectly 
predicted ten cells as ADCCM phenotype using CellProfiler feature space with p > 0.9). C Performance does not improve even if we collapse 
predictions to phenotype category (MitoCheck assigned individual phenotypes to five distinct categories)
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compared to longer-duration incubation (Fig. 5C). Shuf-
fled model enrichment was much lower than the ground 
truth model (Supplementary Fig. 11A). Large phenotypes 
generally had the highest enrichment, but no other phe-
notype displayed substantially elevated scores compared 
to other phenotypes, and most treatments did not have 
enriched phenotypes (Supplementary Fig. 11B-C). When 
analyzing individual treatments per phenotype, we iden-
tified fludarabine-phosphate, amino purvalanol-a, and 
RPL23Aknockdown as significantly enriched for ‘Apopto-
sis’ phenotypes. Results for all three treatments have been 
reported previously [37–39]. Furthermore, oxibendazole, 
colchicine, and CYT-997 all showed enriched ‘Elongated’ 
phenotypes, which have been previously observed [13, 
40–42]. This analysis provides a comprehensive statistical 
estimation of phenotype enrichment for the compound, 
ORF, and CRISPR treatment in the CPJUMP1 dataset, 
which can be mined for future hypothesis testing and 
perturbation annotation.

Discussion
Using publicly available data from the MitoCheck 
consortium, we show that high-content morphology 
features derived using classical computer vision tech-
niques (CellProfiler) and deep learning approaches 
(DeepProfiler) effectively capture single-cell phenotype 
information from nuclei imaging. In held-out test sets, 
simple machine learning models reliably predicted 15 
distinct single-cell phenotypes, ranging from apoptosis 
to specific mitotic phases and alternative nuclear forms 
like polylobed and grape. Initially, we aimed to apply 
these models to analyze unseen data to add single-cell 
phenotyping as an interpretation layer to any high-
content microscopy experiment that marks nuclei (such 
as functional genomic and drug discovery screens). 
However, we encountered significant challenges in our 
leave-one-image-out (LOIO) analysis; a process that 
systematically retrained phenotype predictors on all 
single-cell data while excluding data from one specific 

Fig. 5 Investigating feature alignment and phenotype enrichment in the CPJUMP1 dataset. UMAP projections of A combined MitoCheck and (B) 
CPJUMP1 feature spaces. The left panel represents all nuclei features, while the right panel includes features only belonging to AreaShape 
CellProfiler categories. C Comparing KS-tests between U20S and A549 for three treatment categories and two incubation periods. Only select 
phenotypes highlighted here; see Supplementary Fig. 9 for a full comparison of all phenotypes
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image at a time. This analysis revealed that our models 
struggled to accurately predict single-cell phenotypes 
in individual images not used in training, which was 
not explained by analysis parameters such as illumina-
tion correction or machine learning model balancing. 
While we observed much better single-cell phenotype 
predictions compared to random guessing, poor LOIO 
results suggested that our approach will especially 
struggle with single-cell prediction in new datasets 
beyond MitoCheck. Nevertheless, we investigated how 
to apply our phenotype model to other publicly availa-
ble microscopy data to better understand model behav-
ior and pitfalls.

Analyzing the CPJUMP1 pilot data [27], we identified 
poor dataset alignment with MitoCheck as a pivotal 
issue. Aligning these datasets is complicated by differ-
ences in technical parameters (e.g., staining methods, 
microscopy techniques) and biological parameters 
(e.g., cell lines, treatments). [43] Despite these hurdles, 
we noted that certain features, like AreaShape, exhib-
ited greater consistency across datasets, whereas other 
morphology features based on intensities displayed sig-
nificant variability. This variability highlights the chal-
lenges of accurately annotating phenotypic signatures 
in unseen data and underscores the necessity of care-
ful dataset alignment, including batch effect correction 
[44–46], to enhance the generalizability of image-based 
profiling. Applying a re-trained model using AreaShape 
features only to the CPJUMP1 data identified many 
treatments enriched for specific phenotypes that have 
already been observed. Coupled with low enrichment 
scores in our negative controls, our results show initial 
promise in this approach to assign phenotype to indi-
vidual perturbations in external datasets. We do not 
perform a comprehensive investigation of all CPJUMP1 
treatments in this paper, but we do provide a full list 
of all phenotype enrichment scores. We will apply this 
approach to the full JUMP dataset once its quality is 
controlled and released. In 2010, MitoCheck performed 
a similar approach, training an SVM to predict the phe-
notypic consequences of genome-wide siRNA knock-
downs on cell function [15]. While the models they 
trained, on average, performed well in the labeled data-
set, our analysis suggests that many individual single 
cells—and consequently, numerous genes—that were 
outside their training set, may have inaccurate annota-
tions. However, while single-cell predictions struggle 
with generalizability, averaging single cells over many 
images to form bulk profiles likely improved Mito-
Check phenotype-to-gene annotation, which is also 
what we may have observed in our CPJUMP1 analy-
sis. In other words, our in-depth analysis of single-cell 

generalizability may point to a broader issue in our field, 
and while averaging single cells at least partially miti-
gates this issue, future research is needed to improve 
single-cell phenotype prediction across datasets.

Our overarching goal was to identify generalizable sin-
gle-cell morphology signatures of phenotypes. Given the 
challenges and high time and labor costs associated with 
manually labeling phenotypes, integrating a pre-labeled 
dataset with unlabeled datasets could enable cheap and 
fast predictions for any unlabeled data. However, more 
research is needed to identify the best approach. A rig-
orous evaluation of individual CellProfiler morphology 
features could enhance dataset alignment and future 
phenotype annotation. Specifically, these features could 
be assessed for their stability across variations in illumi-
nation correction, segmentation, image rotation, and the 
presence of imaging artifacts like blur and saturation. 
Additionally, investigating technical parameters (such 
as different microscopes, stains, cell lines, and software 
versions) would improve our understanding of feature 
sensitivity. While DeepProfiler (and other deep learn-
ing feature extractors) might also identify generalizable 
single-cell morphology signatures, frequent updates to 
these models introduce the need for continuous data 
reprocessing. Batch effect correction is already a pivotal 
strategy for microscopy data alignment. [44, 45, 47, 48] 
A feasible approach may involve first aligning a labeled 
dataset with unlabeled data, retraining phenotype predic-
tors in this harmonized space, and then deploying models 
for phenotype prediction in the unlabeled data. Alter-
natively, foundation models potentially offer consistent 
feature representation extraction across datasets, which 
would circumvent the alignment step [10]. For example, 
initiatives like "Mitospace", which focuses on extracting a 
common feature space of mitochondria [49], the masked 
autoencoder Phenom-Beta, which is a vision transformer 
foundational model for embedding microscopy images 
[10], “BioMorph”, which links morphology to organelle 
processes [50], and the Allen Cell Explorer, which uncov-
ers cell phenotypes organelle-by-organelle [51, 52], illus-
trate promising future directions for annotating universal 
cell representations with generalizable single-cell pheno-
types. Nevertheless, these foundation models still require 
phenotype interpretation to analyze cells and pertur-
bations on a uniform, biologically interpretable basis. 
Lastly, collecting new, labeled datasets that span multiple 
cell lines and image acquisition parameters (e.g., different 
microscopes) will provide more information to improve 
and refine machine learning phenotype predictors. Taken 
together, all aforementioned efforts are likely required to 
solve this challenge, which, once addressed, will enable 
robust phenotype prediction and improve mechanistic 
annotations in future microscopy datasets.
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Methods
MitoCheck data, labels, and quality control
Neumann et al. originally collected and used MitoCheck 
data for phenotypic profiling of cells perturbed with siR-
NAs targeting human protein-coding genes. [15] This 
dataset contains the raw timelapse data of live-cell HeLa 
nuclei imaged via the H2B protein tagged with GFP. 
While the manually annotated cell dataset used in Neu-
mann et  al. was compiled in 2007, the MitoCheck con-
sortium continued to create manually annotated datasets 
until 2015. We used the most recent dataset to train and 
evaluate the models. The most recent MitoCheck-gener-
ated labeled dataset includes the phenotypic class label 
and location data for 3,277 cells. [17] The phenotypic 
class label is one of 16 classes (large, metaphase, apop-
tosis, etc.). While the original dataset contained 16 phe-
notypes, we dropped “folded” due to low sample counts. 
Location data for a cell includes its respective plate, well, 
frame, and centroid coordinates.

MitoCheck consortium pre-preprocessed the mitosis 
movies using a two-step quality control (QC) procedure 
based on automatic and manual data inspection [15]. 
MitoCheck applied this procedure before uploading to 
Image Data Resource (IDR) [29]. Therefore, we did not 
use any data that failed the original QC. We performed an 
additional round of QC by inspecting illumination arti-
facts. We discarded frames from well A1 from each plate, 
as we observed consistently irregular illumination, with 
each of these wells having significantly darker illumina-
tion in the center of the frame (Supplementary Fig. 12). 
This differed significantly from the vignetting observed 
in other wells, leading to errors in our illumination cor-
rection during preprocessing. After removing cells that 
failed QC and “folded” cells, 2,862 cells remained as our 
final analytical set.

Downloading MitoCheck data with IDR_Stream
We developed IDR_Stream to rapidly acquire and pro-
cess public microscopy datasets with low computational 
overhead. Image analysis and image-based profiling pipe-
lines typically produce gigabytes to terabytes of interme-
diate files related to each step of the pipeline [5]. For our 
pipeline, these files included raw images, preprocessed 
images, segmentation masks, and image-based mor-
phology profiles in various intermediate data processing 
formats (i.e., annotated, normalized, feature selected) 
[32]. If compiled single-cell features are the only neces-
sary data for downstream analyses, intermediate data 
can unnecessarily clog large amounts of machine storage 
space. IDR_stream therefore downloads the public raw 
images, performs illumination correction, segmentation, 
feature extraction, and image-based profiling processing 

(Supplementary Fig.  1). Importantly, this tool processes 
images in batches, deleting unnecessary files after com-
pleting each batch. We used IDR_Stream to access the 
MitoCheck raw images, which is the only form of data 
provided.

We used IDR_Stream to access the MitoCheck raw 
images. Given a metadata input file that includes the 
location data (plate and well) of MitoCheck movies, 
IDR_Stream uses Aspera high-speed transfer client to 
download the MitoCheck images from IDR (accession: 
idr0013-screenA). We download the files in CellH5 for-
mat, an HDF5 data format for cell-based assays [53]. Each 
CellH5 file contains 93 frames of live cell imaging data.

Applying illumination correction with IDR_Stream
IDR_Stream uses Bio-Formats to read the CellH5 format. 
Bio-Formats bypasses the need for format conversion 
by reading image data directly from proprietary formats 
[54]. IDR_Stream uses PyImageJ to access Bio-Formats 
with Python. Rueden et al. created PyImageJ as a bridge 
between Python and ImageJ. [55] IDR Stream uses the 
BaSiC method for illumination correction of each well 
[30]. We use the Python implementation of the BaSiC 
method, named BaSiCPy. We used the default BaSiCPy 
parameters for illumination correction. The BaSiC 
method works well for preprocessing time-lapse data, 
accounting for time-lapse-specific illumination artifacts 
such as photobleaching. BaSiCPy requires at least three 
images to perform illumination correction. We provide 
BaSiCPy with two frames before/after the desired frame 
(depending on its position in time). After illumination 
correction, IDR_stream keeps only the frame of interest 
for further processing.

Segmenting nuclei with IDR_Stream
IDR_Stream uses the Python implementation of the 
CellPose segmentation algorithm to segment the nuclei 
in each mitosis movie [31]. The CellPose segmentation 
models were trained on a diverse set of cell images, and 
the Python implementation was particularly useful for 
building reproducible pipelines. We manually experi-
mented with CellPose on ten images to determine the 
optimal CellPose parameters for segmenting nuclei. 
Manual experimentation involved examining nuclei seg-
mentation across each image to ensure they looked as 
expected. Ultimately, we used the CellPose cytoplasm 
model for segmentation, which we found segmented 
nuclei in MitoCheck significantly better by eye than 
nucleus models. We used a diameter size of 0, which 
requires the CellPose model to estimate nuclei diam-
eters for each image. We also increased the flow thresh-
old parameter from its default value of 0.4 to 0.8, which 
increased the maximum error allowed for the flow of 
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each cell mask. We found that CellPose could not seg-
ment some nuclei without increasing the flow threshold 
parameter. We also remove nuclei masks on the edge of 
an image to avoid capturing partial nuclei information.

Extracting and processing morphology features with IDR_
Stream
IDR_Stream uses CellProfiler and DeepProfiler to extract 
features. We use CellProfiler version 4.2.4 to extract all 
features within the following categories: granularity, 
object intensity, object neighbors, object intensity distri-
bution, object size shape, and texture [7]. The CellProfiler 
output is a CSV file with single cell metadata and fea-
tures. DeepProfiler extracts morphological features using 
a pre-trained convolutional neural network and weakly 
supervised learning [8]. This model extracts features from 
five Cell Painting channels (DNA, ER, RNA, AGP, Mito). 
We repurposed the model to extract features from the 
MitoCheck mitosis movies as DNA channel features only. 
We also changed parameters in the DeepProfiler soft-
ware. Specifically, we changed the label of interest from 
“Allele” to “Gene” because of the siRNA perturbations 
in MitoCheck. We also changed the box size parameter 
from 96 to 128 to increase the context around each cell. 
We used the DeepProfiler GitHub hash version: 2fb3ed-
3027cded6676b7e409687322ef67491ec7. IDR Stream can 
optionally concatenate single-cell features extracted by 
both CellProfiler and DeepProfiler from each batch into a 
single data frame, which includes metadata. IDR_Stream 
uses pycytominer to compile and annotate the single-
cell embeddings extracted using either CellProfiler and/
or DeepProfiler [32]. Importantly, we also applied IDR_
stream to process MitoCheck negative control nuclei, 
which we used for normalization. These nuclei represent 
an expected distribution of all phenotypes present in the 
data, but about 95% of nuclei are likely in interphase [56]. 
This procedure of using all negative controls is robust 
in the presence of dramatic phenotypes [5]. Specifically, 
we learned z-score normalization parameters from all 
negative control cells (per feature) and applied this trans-
formation to all MitoCheck cells (including those with 
annotated phenotypes). Sklearn standard scaler stand-
ardizes features by removing the mean and scaling to the 
unit variance of negative control cells [57].

Formatting the MitoCheck labels: accounting for IDR_
stream processing differences
We expect some minor differences between MitoCheck 
processing and IDR_stream processing. Specifically, 
IDR_stream identifies centroid coordinates for every 
segmented nuclei, and these coordinates are likely dif-
ferent from MitoCheck centroids because of different 
segmentation parameters. MitoCheck does not provide 

segmentation masks for us to confirm or quantify these 
differences. We nevertheless must assign the correct 
MitoCheck phenotypic class labels to the appropri-
ate IDR_Stream processed cells. We therefore used 
IDR_stream-based masks (segmentation outlines) to 
assign MitoCheck phenotypes. If a MitoCheck centroid 
was within the IDR_stream mask, then we assigned that 
IDR_Stream nuclei the given MitoCheck phenotype. In 
practice, we do not expect this impacted single-nuclei 
phenotype assignment.

Data splitting and machine learning training procedures 
for phenotype prediction
We randomly split 15% of the MitoCheck labeled dataset 
into a separate held-out test set balanced by phenotypic 
class. We used the remaining 85% to train all phenotypic 
profiling models. We used 2,432 samples as the training 
set and 430 as the test set. We trained logistic regres-
sion models with elastic net penalty using sklearn version 
1.1.1 [57]. This model is computationally efficient, easily 
interpretable, and induces sparsity in selecting model fea-
tures. To understand how different feature sets affected 
the models’ performances, we used three different feature 
types to train and test each model: CellProfiler features 
(CP), DeepProfiler features (DP), and a combination of 
these features (CP and DP). To produce a suitable base-
line for generalizable performance, we repeated the steps 
to train final models with randomly shuffled data. In the 
shuffling procedure, we randomly shuffled the features 
independently per column before training. There were 
two model types for each logistic regression model: final 
and shuffled baseline. We evaluated the shuffled model 
on non-shuffled test set data.

We trained two forms of models: 1) multi-class, sin-
gle-label models and 2) binary classification models. 
The multi-class models predict a probability for each of 
the 15 phenotypic classes given a vector of features per 
single cell. We used a multinomial multi-class training 
procedure. The binary classification models predicted 
a probability for “positive” or “negative” for its respec-
tive phenotypic class. After an initial evaluation, we 
also trained multi-class models using only AreaShape 
and Zernike features with the class_weight parameter 
in sklearn specified as “balanced”. In total, we trained 20 
multi-class logistic regression models (2 class_weight 
types * 5 feature types * 2 shuffle types). Since each phe-
notypic class had a specific binary classification model, 
there were 90 binary classification models (3 feature 
types * 2 shuffle types * 15 phenotypic classes). In total, 
we trained and evaluated 110 phenotypic profiling 
models.

We performed a grid search and ten-fold cross-valida-
tion on each model using the training subset to identify 
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optimal regularization and elastic net mixing parameters. 
We tested for cross-validation performance using seven 
different regularization parameters ([1.e-03, 1.e-02, 1.e-
01, 1.e + 00, 1.e + 01, 1.e + 02, 1.e + 03]) and ten differ-
ent elastic net mixing parameters ([0.0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0]). The regularization parameter 
controls the penalty term for all features, and the elas-
tic net mixing parameter controls the trade-off between 
L1 and L2 regression (0 = L2 and 1 = L1). Therefore, the 
closer the elastic net mixing parameter is to 1, the sparser 
the model. We set the model scoring to “F1 weighted”, 
meaning that the model tries to maximize the average 
weighted by supporting the F1 score across the training 
data.

For the binary classification models, we downsampled 
negative labels to get an even split of positive and nega-
tive training labels from the training data. For example, 
if there were only 50 positive labels for a particular class, 
we would randomly sample the negative labels to create a 
training set with 50 negative labels. Undersampling helps 
reduce the bias inherent in datasets with the most nega-
tive labels. We trained multi-class models with the full 
training dataset.

Assessing feature space representations
We quantified the ability of each feature space to separate 
single nuclei into phenotype clusters. We applied Silhou-
ette score [34], comparing each individual phenotype to 
all other nuclei for each feature space. Briefly, Silhouette 
scores quantified phenotype representation tightness and 
separation compared to all other phenotypes [34]. High 
Silhouette scores tell us which phenotypes have tightly 
clustered nuclei, while low Silhouette scores tell us which 
phenotypes look like other phenotypes. Prior to calculat-
ing Silhouette scores, we transformed each feature space 
using Principal Components Analysis (PCA) with 50 
principal components. This procedure ensures that we 
capture a high proportion of variance for each feature 
representation while standardizing the dimensionality of 
Silhouette score calculations.

Evaluating phenotype prediction performance
After training, we evaluated the 110 phenotypic profil-
ing models with F1 score, precision-recall curves, and 
confusion matrices. The F1 score metric included an F1 
score for each phenotypic class present in a model (posi-
tive/negative) and a weighted F1 score. The F1 scores 
measure the models’ balanced precision and recall per-
formance for each class, weighted by the number of true 
instances for each class. The precision-recall curves show 
the tradeoff between precision and recall for different 
classification thresholds. Confusion matrices illustrate 

the models’ true and false positive and false negative 
predictions.

We also performed leave-one-image-out (LOIO) train-
ing and prediction for each phenotypic profiling model. 
For each target image in the MitoCheck labeled dataset, 
we use the cells not from the target image to train the 
multiclass model as described above. We then use this 
trained model to predict phenotype probabilities for each 
cell from the left-out image. LOIO evaluation shows how 
well the model will perform on cells from an image the 
model has never seen before.

Interpreting phenotype models
Generally, the coefficients of the models correspond to 
how the model makes use of specific features in predict-
ing a phenotypic class, where a positive value means a 
feature is generally more likely to contribute to the cor-
responding class, and a zero value means the feature does 
not contribute to the class’s predicted probability. We 
applied hierarchical clustering and visualization of logis-
tic regression coefficients using ComplexHeatmap [58].

Accessing CPJUMP1 pilot data
We accessed the Broad Institute’s publicly available Cell 
Painting data from the JUMP-Cell Painting Consortium 
[27]. We analyzed the CPJUMP1 pilot dataset, which 
consists of 51 plates with approximately 21 million cells. 
The public release includes CellProfiler cell morphology 
features of three perturbation categories (ORF, CRISPR, 
and compound) across two cell lines (A549 and U2OS). 
We accessed these CellProfiler features (SQLite files) 
from the Cell Painting Gallery [59] (accession number 
cpg0000), which is a public Amazon Web Services (AWS) 
S3 bucket. We accessed the corresponding platemap and 
metadata manifests from the JUMP GitHub repository. 
We provide a guide to access these data at https:// github. 
com/ WaySc ience/ JUMP- single- cell/ tree/ main.

Processing CPJUMP1 pilot data
We processed the CPJUMP1 pilot dataset from the pub-
lic SQlite plate files of CellProfiler features using pycy-
tominer [32]. As noted in the CPJUMP1 manuscript, the 
CellProfiler version was either 4.0.7, 4.1.3, or 4.2.1 [27]. 
Specifically, we annotated single cells with plate meta-
data, which included treatment information. Next, we 
normalized each CellProfiler feature across all cells from 
the given plate using z-score normalization. We esti-
mated the mean and standard deviation for the z-score 
transform using only cells from the prespecified negative 
control wells per plate.

The AreaShape CellProfiler features we used to 
train the phenotypic profiling model were not exactly 
the same as the CellProfiler features measured in the 

https://github.com/WayScience/JUMP-single-cell/tree/main
https://github.com/WayScience/JUMP-single-cell/tree/main
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CPJUMP1 pilot dataset. They differed by a single fea-
ture (“Nuclei_AreaShape_ConvexArea”). We set this 
missing feature in the CPJUMP1 dataset to zero to 
align feature spaces. This process leveraged the proper-
ties of our class-weighted multinomial logistic regres-
sion model to only compute probability estimates using 
measured features. After aligning the CellProfiler fea-
tures, we generated the CPJUMP1 cell probabilities 
for each of the 15 MitoCheck phenotypes by applying 
the pre-trained class-weight balanced, AreaShape-
only multi-class phenotypic profiling machine learning 
model (see machine learning training procedure meth-
ods section above). We also applied the model trained 
on shuffled input features as a negative control baseline.

Evaluating single‑cell phenotype probability estimates 
in CPJUMP1
We compared the phenotype probabilities of each 
treated CPJUMP1 well to those of negative control cells 
on the same plate using KS tests. In other words, we 
tested for the difference in single-cell phenotype proba-
bility distributions in treatments versus controls within 
each CPJUMP1 plate for each phenotype. We chose 
KS tests because they are non-parametric and eas-
ily interpreted. We used the same CPJUMP1-defined 
negative control wells [27], of which differed based on 
the treatment type (DMSO = compound, non-target-
ing guides = CRISPR, lowly expressed genes = ORF). 
We removed treatment wells with fewer than 50 cells. 
To reliably compare treatment and negative control 
groups, we down-sampled the group with the highest 
cell count (majority group). When the majority group 
was the negative control group, we applied a stratified 
down-sample balanced by well to ensure the downsam-
pled group had an equal representation across nega-
tive control wells. We applied the same procedure with 
probability estimates derived from models trained with 
randomly shuffled input data.

We aggregated single-cell phenotype probabilities per 
CPJUMP1 well using the median. This represents the 
central tendency of phenotype probabilities per well 
and is equivalent to aggregating single-cell morphol-
ogy features to form well-level morphology profiles. We 
consider this aggregated measurement a “phenotypic 
profile”.
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