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Abstract 

Background The use of single cell/nucleus RNA sequencing (scRNA-seq) technologies that quantitively describe cell 
transcriptional phenotypes is revolutionizing our understanding of cell biology, leading to new insights in cell type 
identification, disease mechanisms, and drug development. The tremendous growth in scRNA-seq data has posed 
new challenges in efficiently characterizing data-driven cell types and identifying quantifiable marker genes for cell 
type classification. The use of machine learning and explainable artificial intelligence has emerged as an effective 
approach to study large-scale scRNA-seq data.

Methods NS-Forest is a random forest machine learning-based algorithm that aims to provide a scalable data-driven 
solution to identify minimum combinations of necessary and sufficient marker genes that capture cell type identity 
with maximum classification accuracy. Here, we describe the latest version, NS-Forest version 4.0 and its companion 
Python package (https:// github. com/ JCVen terIn stitu te/ NSFor est), with several enhancements to select marker gene 
combinations that exhibit highly selective expression patterns among closely related cell types and more efficiently 
perform marker gene selection for large-scale scRNA-seq data atlases with millions of cells.

Results By modularizing the final decision tree step, NS-Forest v4.0 can be used to compare the performance of user-
defined marker genes with the NS-Forest computationally-derived marker genes based on the decision tree classi-
fiers. To quantify how well the identified markers exhibit the desired pattern of being exclusively expressed at high 
levels within their target cell types, we introduce the On-Target Fraction metric that ranges from 0 to 1, with a metric 
of 1 assigned to markers that are only expressed within their target cell types and not in cells of any other cell types. 
NS-Forest v4.0 outperforms previous versions in simulation studies and on its ability to identify markers with higher 
On-Target Fraction values for closely related cell types in real data, and outperforms other marker gene selection 
approaches for cell type classification with significantly higher F-beta scores when applied to datasets from three 
human organs—brain, kidney, and lung.

Discussion Finally, we discuss potential use cases of the NS-Forest marker genes, including for designing spatial transcrip-
tomics gene panels and semantic representation of cell types in biomedical ontologies, for the broad user community.
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Introduction
Single-cell/single-nucleus RNA sequencing (scRNA-seq) 
methods have become an established approach for meas-
uring cell transcriptional phenotypes and better under-
standing distinct cell types and their states based on gene 
expression patterns. Cell types can be defined as distinct 
cell phenotypes that include both canonical cell types 
and discrete cell states [1]. Efforts to define and catego-
rize these cell types using advanced single cell technolo-
gies have been ongoing over the past decade, including 
the Human Cell Atlas (HCA) [2], the NIH Human Bio-
Molecular Atlas Program (HuBMAP) [3], and the NIH 
BRAIN Initiative [4]. These efforts have led to consor-
tium-scale datasets from multiple tissues/organs across 
the human body. For example, an early BRAIN Initiative 
study of the middle temporal gyrus (MTG) region in the 
human brain identified 75 distinct brain cell types with a 
dataset of approximately 16,000 nuclei [5]. A recent study 
on the transcriptomic diversity across the whole human 
brain revealed 461 cell type clusters and 3313 subclus-
ters, with a final dataset comprised of more than three 
million cells [6]. The HuBMAP consortium covers other 
major human organs, including the kidney [7] and lung 
[8], resulting in a collection of 898 cell types with approx-
imately 280 million cells across multi-omics assays [9].

While the number of cell types being identified in these 
scRNA-seq data atlases is increasing rapidly, there is a 
lack of a scalable and generalizable marker gene selection 
method that can systematically characterize these newly 
identified cell types for downstream use cases, such as for 
designing spatial transcriptomics gene panels and seman-
tic representation of cell types in biomedical ontologies. 
Historically, two main approaches have been used to 
identify cell type-specific marker genes from scRNA-seq 
data: differential expression (DE) analysis and manual 
curation of gene lists using prior domain knowledge. For 
example, the anatomical structures (AS), cell types (CT), 
and biomarkers (B) ASCT + B tables [10] provided by the 
HuBMAP consortium use markers found in the scien-
tific literature curated by domain experts for most of the 
organs in HuBMAP [11]. This approach is not only infea-
sible for large-scale datasets, but also leads to potentially 
incomplete (missing markers) or redundant (markers of 
parent cell type being used for child cell type) informa-
tion for the most granular cell types. Alternatively, DE 
genes selected by modified Wilcoxon rank sum (per-
formed using the “presto” R package) or related statistical 
tests are used in the popular Azimuth [12] web applica-
tion for those cell types represented in the references. 
The DE approach selects genes based on the gene expres-
sion distributions and the adjusted p-values produced 
by a chosen testing method, which does not directly test 
the ability to classify cell types. Therefore, we formally 

introduce the notion of “cell type classification marker 
gene combinations” for scRNA-seq data, which must 
meet the following criteria: 1) each gene is expressed in 
the majority of cells of a given type, 2) each gene displays 
a “binary expression pattern” (i.e., highly expressed in the 
target cell type and little to no expression in other cell 
types), and 3) gene combinations are optimized for cell 
type classification using metrics that quantify classifica-
tion confidence. By meeting these criteria, a generalizable 
method that can produce reproducible “cell type classifi-
cation marker gene combinations” would emerge.

For the above-described challenge, we have proposed 
to use a machine learning approach to identify marker 
genes for cell type classification from scRNA-seq data 
and developed the NS-Forest method [13, 14]. NS-For-
est uses the random forest machine learning algorithm 
to select informative gene features (or markers) that are 
optimized for cell type classification. Random forest is a 
machine learning classification model that is well-known 
for retaining high explainability, which is preferable for 
biomedical use cases.

NS-Forest was first introduced in 2018 as an algorithm 
that takes in scRNA-seq data and outputs the minimum 
combination of necessary and sufficient features that 
capture cell type identity and uniquely characterize a dis-
crete cell phenotype [1]. In NS-Forest v1.3 [14] (the first 
publicly released version), the method first produces a 
list of top gene features (marker candidates) for each cell 
type ranked by Gini index calculated in the random for-
est model. (Fig. 1 summarizes major steps of the NS-For-
est workflow compared across all versions.) The median 
gene expression value of each potential marker within the 
target cell type is calculated as the expression threshold 
to determine the number of true/false positives/nega-
tives for each marker candidate in each cell type. Finally, 
the minimum set of markers for each cell type is deter-
mined by evaluating the unweighted F1-score following 
the stepwise addition of each of the ranked genes for each 
cell type.

NS-Forest v2.0 [13] was developed in 2021, and intro-
duced the concept of the Binary Expression Score, a 
metric used to quantify how well a marker gene exhibits 
a “binary expression pattern” in which the marker gene 
is expressed at high levels in the majority of cells of the 
target cell type and not in cells of other cell types. Ver-
sion 2.0 uses Binary Expression Score as a post random 
forest ranking step to preferentially select genes with the 
desired binary expression pattern, in addition to filter-
ing out genes with negative expression levels, after the 
initial feature selection process from the random for-
est classifier. Instead of simply using each gene’s median 
expression value within the target cluster to determine its 
expression threshold, version 2.0 builds a one-versus-all 
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decision tree for each marker candidate to derive the 
optimal expression level for classification. Finally, the 
F-beta score is calculated for all possible combinations 
of the top-ranked, most binary-expressed marker candi-
dates in order to identify the best combination of mark-
ers with the maximum F-beta score. The F-beta score is 
different from the F1 score in that it is the weighted har-
monic mean of the precision and recall (instead of just 
the harmonic mean), with the beta parameter weight 
adjustment allowing for emphasis of either precision or 
recall. In version 2.0 and all following versions, beta is set 
to 0.5 by default to weight precision higher than recall, to 
control for excess false negative values introduced by the 
dropout technical artifact in scRNA-seq experiments.

NS-Forest v3.9 is algorithmically very similar to version 
2.0, and mainly differs by the format of the data used as 
input to the algorithm. Instead of the simple cell-by-gene 
expression matrix, where each entry contains the log-
transformed or normalized expression level of each gene 
in each cell along with the cluster labels, version 3.9 takes 
the annotated data (anndata) [15] object in the.h5ad file 
format as input. Version 3.9 also provides calculation of 
the Positive Predictive Value (PPV) metric (precision) for 
quantifying the classification performance of the algo-
rithm in addition to the F-beta score, emphasizing the 
pragmatic importance of the predicted positives in many 
of the applications.

One of the observed lingering weaknesses in versions 
2.0 and 3.9 was the lower performance of NS-Forest 
marker genes in distinguishing between closely-related 
cell types with similar transcriptional profiles. In the 
human brain middle temporal gyrus (MTG) data-
set [5] that was used to develop previous versions of 

NS-Forest, there exist several of these closely-related 
cell type groups, especially within the VIP, PVALB, and 
L4 neuronal cell subclasses (see Results section). Here, 
we describe NS-Forest v4.0, which adds an enhanced fea-
ture selection step to improve discrimination between 
similar cell types without sacrificing the overall classifi-
cation performance. This new “BinaryFirst” step enriches 
for candidate genes that exhibit the binary expression 
pattern as a feature selection approach prior to the ran-
dom forest classification step. The BinaryFirst strategy 
effectively reduces the complexity of the input feature set 
for the random forest classifier, decreasing the runtime 
and allowing for the preferential selection of informative 
binary markers during the iterative random forest pro-
cess and thus resulting in a more distinct and concise set 
of marker genes.

Results
Informative gene selection prior to random forest 
in NS‑Forest version 4.0
The most significant change to the workflow of NS-For-
est in version 4.0 is the introduction of the BinaryFirst 
module that is implemented in the gene pre-selection 
step of the workflow (Fig. 1). The BinaryFirst strategy is 
designed to enrich for candidate genes that exhibit the 
desired gene expression pattern prior to the random for-
est feature ranking. This step pre-selects gene candidates 
that have a Binary Expression Score value that is greater 
than or equal to a dataset-specific threshold based on 
the distribution of the Binary Expression Scores of all 
genes in the dataset (Fig. 2). In version 4.0, four thresh-
old options used in the BinaryFirst step were imple-
mented: ‘none’, ‘BinaryFirst_mild’, ‘BinaryFirst_moderate’, 

Fig. 1 Major steps of the NS-Forest workflow compared across all versions
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or ‘BinaryFirst_high’ (see Methods). If the threshold is 
‘none’, the algorithm is the same as version 3.9. The other 
thresholds are calculated based on the distribution of 
Binary Expression Scores from all genes to account for 
the dataset-specific gene expression variabilities aris-
ing from many factors, including the organ/tissue type, 
sample pre-processing, sequencing platform, etc. As the 
thresholding value increases, the number of selected 
genes decrease. Thus, the BinaryFirst strategy effectively 
reduces the feature space that the random forest classi-
fier must search over in the subsequent workflow step of 
NS-Forest and serves as an informative dimensionality 
reduction step. A scRNA-seq dataset typically contains 
tens of thousands of genes, but the majority will not be 
useful as marker genes for any given cell type clusters. 
Random forest is an ensemble machine learning method 
that uses the bagging technique to train a large number 
of decision trees. The bagging technique is an iterative 
procedure of random selection of features and, there-
fore, is time-consuming for classifying cell types from 
scRNA-seq data [16]. Each of the decision trees in the 

forest is constructed of nodes, at which the data is split 
into groups that optimize class purity using randomly 
selected features. Because performing an exhaustive 
search of all possible combinations of features at each 
split in the decision trees is computationally intractable, 
random forest classifiers can produce sub-optimal col-
lections of decisions trees due to the random selection of 
available features [17]. In previous versions of NS-Forest, 
the large number of genes in the input datasets reduced 
the likelihood that the optimal genes for classification 
would be adequately sampled. Our hypothesis was that 
by reducing the size of the set of gene candidates, the 
BinaryFirst strategy would be able to adequately sample 
all of the candidate input genes with a reasonable num-
ber of decision trees, thereby simplifying the task of the 
random forest classifier while simultaneously reducing 
the overall runtime of NS-Forest. In summary, NS-Forest 
v4.0 utilizes the BinaryFirst strategy to enhance the sta-
bility and classification performance of the random for-
est classifier by pre-selecting informative features from 
scRNA-seq data.

Fig. 2 NS-Forest version 4.0 workflow. The algorithm uses an anndata object in.h5ad format, containing the cell-by-gene expression matrix 
and cluster labels for each cell, as data input (step 1). The median gene expression for each gene in each cluster (i.e., a cluster-by-gene median 
matrix) is calculated and genes that have positive median expression in at least one cluster are pre-selected (not shown). The Binary Expression 
Score (see Methods for explaination of notations) is then calculated for each cluster-gene pair (step 2) producing a cluster-by-gene Binary 
Score matrix (note that a gene may have different Binary Score values in different clusters), and a dataset-specific threshold is calculated based 
on the Binary Score distribution and user-selected mild, moderate, or high criterion. This threshold value is used to select candidate genes for each 
cluster with a Binary Expression Score greater than or equal to the threshold (step 3). These candidate genes are passed to build binary classification 
models for each cluster using the random forest (RF) machine learning method. Features (genes) are extracted from the RF model and ranked 
by the Gini Impurity index, and the top RF features are then reranked by their pre-calculated Binary Scores (step 4). A short list of the top-ranked 
candidate genes that are not only ranked high in the RF classification models but also have high Binary Scores are passed for decision tree feature 
evaluation and determining the best marker gene combination. A single-split decision tree is built for each evaluated gene for determining 
the optimal expression threshold for classification. All combinations of any length of these genes are considered using ‘AND’ logic to combine 
the decision trees, and the best combination is determined by the highest F-beta score as an objective function for optimizing the overall 
classification performance (step 5). The F-beta score, Positive Predictive Value (PPV) (a.k.a. precision), recall, On-Target Fraction, as well as true/false 
positive/negative classification values are reported for each cluster, serving as metrics for evaluating the performance of the final maker gene 
combinations (step 6)
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Improved marker gene selection on the human brain 
dataset
The performance of NS-Forest v4.0 was assessed on the 
same human middle temporal gyrus (MTG) brain data-
set that was used to evaluate previous versions of NS-
Forest [5]. To determine the best thresholding criterion, 
the mild, moderate, and high BinaryFirst configurations 
were compared for the version 4.0 algorithm. The evalu-
ation is based on the On-Target Fraction metric (see 
Methods), which is specifically designed to quantify how 
much of the marker gene expression is restricted to the 
target cluster. Comparing these three configurations, the 
On-Target Fractions significantly increase as the strin-
gency of BinaryFirst thresholding increases (Fig.  3A), 
which results in fewer candidate genes for random forest 
construction (Fig.  3B). This suggests that the gene pre-
selection step helps the NS-Forest algorithm better select 
on-target marker genes while effectively reducing the 
dimensionality of the input gene space. Hereinafter, the 
‘BinaryFirst_high’ configuration will be the default setting 
for NS-Forest v4.0, unless specified otherwise.

The performance of all versions of NS-Forest were 
compared on the same brain dataset. The overall per-
formances of different versions are shown in Fig.  3C, 
where a noticeable decrease in off-target expression is 
observed across the three heatmaps from versions 1.3 to 
2.0/3.9 to 4.0. In the most ideal scenario where there exist 
marker genes that are exclusively expressed for each clus-
ter, marker gene expression would only be observed in a 
stair-step pattern along the diagonal axis in such expres-
sion heatmaps. By this standard, NS-Forest v4.0 shows 
the cleanest diagonal pattern in its heatmap. Improve-
ment is also observed when comparing the performance 
metrics, as the median PPV and the median On-Target 
Fraction increased from v2.0/v3.9 to v4.0 across all 75 
clusters (Fig.  3D). The improvement in PPV (precision) 
means that version 4.0 better identifies marker genes 
that, when used as features by decision tree classifiers, 
lead to improved performance at identifying cells that 
belong to each unique cell type by reducing the number 
of false positives in this classification task. The increase 
in On-Target Fraction further supports this claim that 
version 4.0 is able to identify marker genes that are 
exclusively expressed at high levels in their target clus-
ters. This improvement in the PPV and On-Target Frac-
tion is slightly offset by a small decrease in the median 
F-beta score between the two versions. The tradeoff in 
the F-beta score was previously discussed in Aevermann 
et al. [13] when comparing the off-the-shelf random for-
est marker candidates strictly ranked by feature impor-
tance (Gini Impurity) to the top candidates re-ranked 
by their Binary Expression Score values. Aevermann 

et al. demonstrated that the marker genes selected with 
significantly higher Binary Expression Scores are more 
useful for many downstream assays such as RT-PCR and 
spatial transcriptomics. A similar trend was observed in 
this current comparison of versions 2.0/3.9 and version 
4.0: the Binary Expression Scores are higher for v4.0 than 
for v2.0/3.9, with an average of 0.971 compared to 0.936. 
This is consistent with the observations of a cleaner diag-
onal pattern in the heatmap and higher On-Target Frac-
tion values for version 4.0.

In total, NS-Forest versions 2.0/3.9 and version 4.0 
identified 168 and 167 total marker genes, and 154 and 
147 unique markers, respectively, to optimally distinguish 
between the 75 cell type clusters in the human MTG 
dataset. 85 of the total markers (~ 51% of the markers 
identified by v2.0/3.9) were identified for the same cluster 
for both sets. The full list of NS-Forest v4.0 marker genes 
on the human MTG dataset are available in Supplemen-
tary Table 1.

Localized improvement in marker gene specificity 
for closely related cell types
One of the motivations for developing NS-Forest v4.0 
was to improve the previously sub-optimal performance 
on specific subclades of closely related cell types in the 
MTG dataset that may be more difficult to distinguish 
compared to all the other cell types. The MTG study 
found that the inhibitory neuron types are highly diverse 
but mostly sparse (45 types and 4,297 nuclei), and the 
excitatory neuron types span multiple brain layers and 
are most similar to types in the same or adjacent layers 
(24 types and 10,708 nuclei) [5]. These highly similar yet 
distinct cell types are usually grouped as subclades in 
the hierarchical dendrogram (Supplementary Fig.  1A). 
The performance of version 4.0 on the VIP (vasoactive 
intestinal polypeptide-expressing inhibitory neurons), 
PVALB (parvalbumin-expressing inhibitory neurons) and 
L4 (layer 4 excitatory neurons) subclades was examined 
using the three different BinaryFirst thresholds to deter-
mine if NS-Forest v4.0 would produce higher On-Target 
Fractions. Visually, there appears to be a clear improve-
ment in the VIP subclade, as the amount of off-target 
expression (represented by the number of yellow squares 
not on the diagonal axis in the highlighted VIP box) looks 
to be substantially fewer in the heatmap for the ‘Bina-
ryFirst_high’ configuration (Supplementary Fig.  1B). 
The amount of on-target expression (represented by 
the amount of red and orange squares on the diago-
nal axis) appears to be greatest in this heatmap as well. 
While the pattern of the PVALB and L4 subclades is less 
obvious, the pattern of increased on-target expression 
and decreased off-target expression is still observable. 
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These trends are also observed in the median On-Target 
Fraction values, as this value is the highest for all three 
subclades using the ‘BinaryFirst_high’ configuration 
(Supplementary Fig. 1C).

The distribution of On-Target Fractions for each of the 
three subclades is consistent with these visual patterns. 
The boxplot showing the On-Target Fraction values for 
the ‘BinaryFirst_high’ threshold is clearly higher than 

Fig. 3 NS-Forest performance evaluated on the human MTG dataset. A Boxplots displaying the distribution of On-Target Fraction values 
across the 75 clusters in the human MTG dataset from running NS-Forest v4.0 with mild, moderate, and high BinaryFirst configurations. Paired 
t-test results: mild vs. moderate p-value = 0.01, moderate vs. high p-value = 1.79e-04, mild vs. high p-value = 1.68e-06. B Boxplots displaying 
the distribution of the number of genes retained after the BinaryFirst thresholding step from (A). C Heatmaps of NS-Forest v1.3, v2.0/v3.9, 
and v4.0 marker genes for the 75 cell type clusters from the human MTG dataset. The colors correspond to the normalized median expression 
level (log2-transformed counts per million) for the marker gene (rows) in a given cell type cluster (columns), with high expression in red/yellow, 
and low expression in blue/white. The clusters are ordered according to the hierarchical dendrogram provided in the original study (Fig. 1c in [5]). D 
Comparison of the performance metrics of the corresponding versions of NS-Forest results shown in (C)

*Note that the unweighted F1 score is used in v1.3. The On-Target Fraction difference between v2.0/3.9 and v4.0 corresponds to the mild and high 
BinaryFirst threshold comparison in (A)
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that for the ‘BinaryFirst_mild’ and ‘BinaryFirst_moderate’ 
thresholds in all three subclades (Supplementary Fig. 2). 
The p-value for comparing the mild and high BinaryFirst 
thresholds for the VIP subclade is statistically significant 
(p-value = 0.01), but the p-values for the L4 subclade and 
the PVALB subclade are not significant (p-value = 0.37 
and 0.07, respectively); this is likely due to the small sam-
ple size for the paired t-test (the L4 subclade has 5 dis-
tinct cell types and the PVALB subclade has 6, whereas 
the VIP subclade has 21).

In addition, an extremely stringent threshold of 
mean + 3 standard deviations was evaluated to inves-
tigate the further impact of the BinaryFirst strategy 
on these three subclades and globally (Supplementary 
Fig. 3). Overall, a cleaner heatmap was observed (Supple-
mentary Fig.  3A), where 159 marker genes (145 unique 
genes) were identified for the human MTG dataset. Less 
off-diagonal expression was also observed in the VIP 
subclade (Supplementary Fig. 3B). At this higher thresh-
old, quantiative markers that could be useful in refining 
the cell type classification in the random forest model 
would be filtered out at the cost of lower median F-beta 
score and lower median PPV (Supplementary Fig.  3C), 
even though the median On-Target Fraction was higher 
as reflected in the cleaner heatmap. The median On-
Target Fractions of the three subclades showed that the 
local performance in the L4 subclade was worse than 
the ‘BinaryFirst_high’ threshold, and the performance 
in the PVALB and VIP subclades were further improved 
(Supplementary Fig.  3D). By design, the higher thresh-
olds result in fewer number of genes with higher Binary 
Scores being inputted to the random forest step. How-
ever, there is not a linear trend between the On-Target 
Fractions and the number of input genes to the random 
forest step using different thresholds (Supplementary 
Fig. 3E), as the linear fitted lines had  R2 values less than 
0.01 for ‘BinaryFirst_moderate’ and ‘BinaryFirst_high’ 
(‘BinaryFirst_mild’ does not apply as it takes in all the 
genes for the random forest step) and the linear fitted line 
was mainly driven by the two outliners for the mean + 3 
standard deviations threshold. Based on this evaluation, 
the ‘BinaryFirst_high’ is set as the default threshold in the 
NS-Forest v4.0 algorithm.

Validation on additional datasets of human kidney 
and lung
Datasets from two other human organs—the human kid-
ney dataset from the Kidney Precision Medicine Project 
(KPMP) [7] and the human lung dataset from the Lung 
Airways and Parenchymal Map (LAPMAP) [8], both con-
tributing to the HuBMAP consortium – were used to 
validate the performance of NS-Forest v4.0. In the lung 
dataset, three annotation levels were evaluated: level 3 

(L3), level 4 (L4), and level 5 (L5) subclasses. The kidney 
dataset has 75 distinct cell types and the lung dataset has 
61 cell types at the L5 subclass. For both the kidney and 
lung datasets, the heatmaps show more specific expres-
sion along the main diagonal with version 4.0 (Fig. 4A), 
which complement the observed high On-Target Frac-
tion values for these datasets (Fig.  4B). These human 
kidney and lung metric values are higher than the met-
rics for the brain dataset because the human brain is a 
more complex organ in terms of the diversity of related 
cell types. Version 2.0/3.9 already performs quite well at 
selecting marker genes for these two organs compared to 
the brain, and hence the improvement of version 4.0 is 
less obvious.

Comparing versions 2.0/3.9 and 4.0 (Fig.  4B), the 
median F-beta scores are very similar in both NS-Forest 
versions for each organ. In the kidney dataset, a slight 
improvement in PPV and a slight decrease in On-Tar-
get Fraction were observed going from version 2.0/3.9 
to version 4.0. It is interesting to note that although 
the On-Target Fraction is slightly lower, the number of 
false positive classifications is much fewer in version 4.0 
(dropped from an average of 312.5 cells in version 2.0/3.9 
to 198 cells in version 4.0), confirming that the version 
4.0 marker genes are selected for optimal classification. 
In the lung L5 subclass dataset, increases in both PPV 
and On-Target Fraction were observed with version 4.0.

NS-Forest v2.0/3.9 and v4.0 identified 157 and 169 
total marker genes for the kidney dataset, and 144 and 
151 unique markers, respectively, to optimally clas-
sify the 75 cell types (Supplementary Tables  2–3). 117 
of the total markers (75% of the markers identified by 
v2.0/3.9) were identified for the same cluster for both 
sets. NS-Forest v2.0/3.9 and v4.0 identified 131 and 126 
total marker genes, respectively, for the lung L5 dataset, 
and 125 and 121 unique markers, respectively, to opti-
mally distinguish between the 61 cell types. 107 of the 
total markers (82% of the markers identified by v2.0/3.9) 
were identified for the same cluster for both sets. Similar 
results were obtained running NS-Forest on the L4 and 
L3 subclasses (49 and 44 types, respectively) of the same 
lung dataset (Supplementary Fig.  4 and Supplementary 
Tables 4–5), suggesting that it is easier to select marker 
genes at less granular levels. The L4 and L3 subclasses 
results (Supplementary Fig.  4B) showed that while the 
median F-beta and median PPV are very similar between 
the two versions, these metric values are slightly lower 
in v4.0 (although all differences are less than 0.03). How-
ever, there is a substantial gain in the median On-Target 
Fraction. As previously explained, the reason for the 
difference in F-beta is the trade-off of the major gain in 
Binary Score as intended by the algorithm’s design. After 
a careful review of the clusters that showed lower PPV 
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in v4.0, it was identified that more positives were classi-
fied in those clusters in v4.0 than v2.0/3.9, and the gain of 
the increase in true positivies came at the cost of a larger 
increase in false positives for those clusters.

Improvement in runtime in version 4.0
In addition to the improvements in the classification 
performance, the overall runtime of NS-Forest v4.0 
(by default, ‘BinaryFirst_high’ is used) is much lower 
than that of v2.0/3.9 in all three human organ datasets 
(Table  1), with the ratio of runtime (v4.0 to v2.0/3.9) 
ranging from 0.10 to 0.26 across the datasets. In all three 
datasets, the ‘BinaryFirst_mild’ configuration did not fil-
ter out any genes, indicating that more than half of the 
genes have a value of 0 for their Binary Expression Score 
and thus, a value of 0 for their median expression per 
cluster. We note that for all three datasets, there is a large 
decrease in runtime in v4.0 with the ‘BinaryFirst_moder-
ate’ configuration, and a less substantial decrease going 
from the moderate to ‘BinaryFirst_high’ configuration. 
These differences in runtime correspond to the decreases 
in the average number of genes left per distinct cell type 
after the BinaryFirst step. When the ‘BinaryFirst_high’ 

threshold was used, 1–7% of the total original genes 
passed the BinaryFirst threshold in the three datasets. 
This indicates that the majority of genes in these data-
sets have low Binary Expression Scores, and that the dis-
tribution of Binary Expression Scores in these datasets 
is heavily right-skewed (Supplementary Fig. 5), which is 
generally true for all scRNA-seq data. Overall, the Bina-
ryFirst step can dramatically reduce the number of can-
didate genes that are considered as potential markers as 
input to the random forest step and simultaneously pro-
vide improvement in important measures of classifica-
tion performance.

Marker gene comparison for the human lung cell atlas
While the goal of NS-Forest is to define the minimum set 
of necessary and sufficient marker genes to classify cell 
types from scRNA-seq data, other popular marker gene 
approaches aim to define marker genes by identifying 
genes that are differentially expressed between cell types 
(e.g., Azimuth [12]), or by manually curating knowledge 
historically reported in the scientific literature (e.g., 
ASCT + B from the HuBMAP consortium [10]). Although 
Azimuth and ASCT + B provide pan-organ marker 

Fig. 4 NS-Forest performance evaluated on other human organs (kidney and lung). A Heatmaps of NS-Forest v2.0/v3.9 and v4.0 marker 
genes for the 75 cell type clusters from human kidney dataset and 61 cell types from human lung L5 subclass dataset. The colors correspond 
to the normalized median expression level (log2-transformed counts per million) for the marker gene (rows) in a given cell type cluster 
(columns), with high expression in red/yellow, and low expression in blue/white. The clusters are ordered according to the hierarchical ordering 
in the dendrogram generated by the scanpy package (scanpy.tl.dendrogram) using default settings. B Comparison of the performance metrics 
corresponding to the NS-Forest results shown in (A)
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gene lists as centralized resources, it is more often that 
individual studies provide their own marker gene lists 
derived for each specific dataset. To compare the per-
formance of different marker gene selection approaches, 
the Human Lung Cell Atlas (HLCA) core dataset was 
used as a common comprehensive data resource, con-
sisting of ~ 0.5 million cells clustered into 61 cell types 
from healthy lung tissues from 107 individuals [18]. The 
HLCA authors provided cell type-specific marker genes 
by iteratively subsetting the atlas into sequentially gran-
ular classifications and filtering for unique genes within 
the compartments (hereinafter, HLCA markers). Mean-
while, the lung single cell community also constructed 
the LungMAP single-cell reference (CellRef ) to provide 
integrated information for both human and mouse lungs 
[19]. For this comparison, we consider five marker gene 
lists for healthy human lung cell types: NS-Forest mark-
ers, HLCA markers, CellRef markers, ASCT + B markers, 
and Azimuth markers. The HLCA markers are available 
in Supplementary Table 6 from the publication [18]. The 
CellRef markers were extracted from the human Lung-
MAP CellCards, which are available from Supplementary 
Data 2 from the publication [19]. The ASCT + B markers 
are available from the “lung v1.4” table at the Human Ref-
erence Atlas portal (https:// human atlas. io/ asctb- tables). 
The Azimuth markers derived from the HLCA core 
dataset are pre-calculated and available under “Human—
Lung v2 (HLCA)” at the Azimuth portal (https:// azimu th. 
hubma pcons ortium. org/). Because CellRef and ASCT + B 
markers are not directly derived for the HLCA cell types, 
the Simple Standard for Sharing Ontological Mappings 
(SSSOM) guideline [20] and Cell Ontology [21] IDs were 
used to map the CellRef and ASCT + B cell types to the 
HLCA cell types, resulting in 33 and 18 exact matches, 
respectively.

To derive NS-Forest markers, NS-Forest v4.0 was 
applied to the HLCA core dataset and 122 marker 
genes (1–4 marker genes per type) for the 61 fin-
est level cell types were identified (Supplementary 
Table  6). Figure  5A shows the NS-Forest marker gene 
expression in the 61 HLCA cell types ordered accord-
ing to the dendrogram in Fig. 5B. In this dendrogram, 
similar cell types are grouped according to the hierar-
chical clustering of the transcriptome profiles of these 
cell types; three major branches consisting of immune 
cells, endothelial and stromal cells, and epithelial cells 
are observed. With the dendrogram ordering, the NS-
Forest marker genes show a strong and clean expres-
sion pattern along the main diagonal in the expression 
dotplot (Fig.  5A). Similar dotplots were produced for 
the other four marker gene lists (Supplementary Fig. 6). 
The HLCA marker list contains 162 marker genes (1–5 
markers per type) for the 61 cell types, and the dotplot 
has an expected diagonal pattern in the expression dot-
plot but with more off-diagonal expressions (Supple-
mentary Fig. 6A). The CellRef marker list contains 115 
marker genes (2–7 markers per type) for the 33 exact 
matched cell types. The CellRef dotplot shows a rela-
tively clean diagonal expresion pattern, although some 
genes show high levels of expression for multiple cell 
types (Supplementary Fig.  6B). The ASCT + B marker 
list contains 80 marker genes (3–5 markers per type) for 
the 18 exact matched cell types. The ASCT + B dotplot 
is sparse (Supplementary Fig.  6C) because the manual 
curation approach based on existing knowledge from 
the scientific literature does not capture the granular-
ity obtained in single cell-resolution data. The Azimuth 
marker list contains 535 marker genes (8–10 markers 
per type) for 56 of these cell types (AT0, Hematopoietic 
stem cells, Hillock-like, Smooth muscle FAM83D + , 

Table 1 Comparison of runtime and number of genes that passed the BinaryFirst filtering criterion between different BinaryFirst 
configurations

Dataset BinaryFirst configuration Time to run 
(hrs:min:secs)

Ratio to run time 
of v2.0/3.9

Average fraction of genes left 
per cluster after BinaryFirst 
filtering
(n/total)

Human MTG NS-Forest v2.0/3.9/BinaryFirst: mild (median) 00:55:33 1 1 (13,945/13945)

BinaryFirst: moderate (mean + 1 std. dev.) 00:18:10 0.325 0.164 (2292.47/13945)

BinaryFirst: high (mean + 2 std. dev.) 00:10:58 0.196 0.073 (1022.99/13945)

Kidney NS-Forest v2.0/3.9/BinaryFirst: mild (median) 68:17:37 1 1 (33,920/33920)

BinaryFirst: moderate (mean + 1 std. dev.) 06:49:36 0.100 0.013 (447.79/33920)

BinaryFirst: high (mean + 2 std. dev.) 06:46:40 0.100 0.013 (446.39/33920)

Lung: L5 NS-Forest v2.0/3.9/BinaryFirst: mild (median) 02:37:58 1 1 (29,800/29800)

BinaryFirst: moderate (mean + 1 std. dev.) 00:44:56 0.284 0.021 (639.61/29800)

BinaryFirst: high (mean + 2 std. dev.) 00:41:16 0.261 0.020 (609.87/29800)

https://humanatlas.io/asctb-tables
https://azimuth.hubmapconsortium.org/
https://azimuth.hubmapconsortium.org/
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and pre-TB secretory markers are not available). The 
Azimuth dotplot lacks a clean diagonal pattern with 
many of the genes being expressed at high levels across 
many similar cell types (Supplementary Fig. 6D).

The NS-Forest v4.0 Python package was also modu-
larized to enable user-defined marker gene evalua-
tion, allowing for direct comparison of the cell type 

classification metrics between different input marker 
lists. Using this approach, the performance of the five 
marker gene sets was compared using the HLCA data 
by calculating F-beta score, PPV (precision), recall, and 
On-Target Fraction for all cell types and directly com-
paring the medians (Fig.  5C), along with the distribu-
tions of these performance metrics for the 13 common 

Fig. 5 NS-Forest marker genes compared to other published HLCA marker gene lists. A Dotplot of the 122 NS-Forest marker genes on HLCA 
core cell types. B Dendrogram of 61 ann_finest_level cell types from HLCA core dataset corresponding to the rows in (A), generated 
before preprocessing and by the scanpy package (scanpy.tl.dendrogram). C Comparing the number of cell types, number of markers, number 
of unique markers, median F-beta score, median PPV (precision), median recall, and median On-Target Fraction for the NS-Forest, HLCA, CellRef, 
ASCT + B, and Azimuth marker lists. D-G Boxplots of F-beta score, PPV (precision), recall, and On-Target Fraction for the 13 cell types commonly 
characterized by all methods. H–K Boxplots of F-beta score, PPV (precision), recall, and On-Target Fraction for all available cell types across methods
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cell types matched across all five reference datasets 
(Fig.  5D-G) and for all matched cell types (Fig.  5H-K). 
For the fair comparison of the 13 common cell types, the 
NS-Forest marker genes have the highest median F-beta 
score (0.80), followed by the HLCA markers (0.65), Cell-
Ref markers (0.39), ASCT + B markers (0.22), and Azi-
muth markers (0.18). Similar results were found using 
all cell types (NS-Forest: 0.71, HLCA: 0.43, CellRef: 
0.38, ASCT + B: 0.17, and Azimuth: 0.17 using paired 
t-test, same below). The F-beta scores reflect the global 
patterns observed in the dotplots of these marker gene 
lists (Fig.  5A and Supplementary Fig.  6). The distribu-
tions of F-beta scores are significantly different between 
NS-Forest and all other methods (NS-Forest vs. HLCA: 
p = 0.0039, NS-Forest vs. CellRef: p = 2.0e-5, NS-For-
est vs. ASCT + B: p = 2.1e-6, NS-Forest vs. Azimuth: 
p = 1.6e-5). Surprisingly, the median PPV (precision) 
values are high for all five methods (0.89–0.99), with the 
ASCT + B being the highest, showing no significant dif-
ference between NS-Forest and the other methods (NS-
Forest vs. HLCA: p = 0.70, NS-Forest vs. CellRef: p = 0.93, 
NS-Forest vs. ASCT + B: p = 0.81, and NS-Forest vs. 
Azimuth: p = 0.098). In contrast, the median recall val-
ues show a similar trend to the F-beta scores, with NS-
Forest being the highest (0.58) and ASCT + B being the 
lowest (0.054) in the 13 common cell types. The distribu-
tions of recall values are significantly different between 
NS-Forest and all other methods (NS-Forest vs. HLCA: 
p = 0.036, NS-Forest vs. CellRef: p = 3.5e-7, NS-Forest 
vs. ASCT + B: p = 2.0e-6, and NS-Forest vs. Azimuth: 
p = 3.9e-6). The median On-Target Fraction ranges from 
the highest (0.55) for NS-Forest and the lowest (0.19) for 
Azimuth in the 13 common cell types. The difference of 
the overall distributions of On-Target Fraction between 
NS-Forest and the other methods are not significant for 
HLCA and CellRef, and are significant for ASCT + B and 
Azimuth (NS-Forest vs. HLCA: p = 0.61, NS-Forest vs. 
CellRef: p = 0.73, NS-Forest vs. ASCT + B: p = 0.0071, and 
NS-Forest vs. Azimuth: p = 1.3e-4). Though the differ-
ence in median On-Target Fraction values between NS-
Forest and ASCT + B is small in Fig.  5G, the significant 
p-value from the  paired t-test can be expained in Sup-
plementary Fig. 7O, where most of the pairs have higher 
values in NS-Forest. Scatter plots for pairwise compari-
son between the NS-Forest markers and other markers 
for each cell type also show superior F-beta and recall 
results using NS-Forest marker combinations (Supple-
mentary Fig.  7), while having comparable performance 
in PPV (precision) and On-Target Fraction. It is interest-
ing to note that there are several clusters that have per-
fect On-Target Fractions for the CellRef markers, but 
lower recall. These genes are exclusively expressed in the 

target cluster, but in a much smaller proportion of cells 
(an example is highlighted in Supplementary Figs. 6 and 
7), which would result in more false negative cells and 
thus lower recall. It is generally true that the low F-beta 
and recall values for the other four methods are driven 
by excessive false negative predictions. Comparing all 
methods, NS-Forest produces the most comprehensive 
and concise list of marker genes with consistently higher 
F-beta scores for cell type classification.

Comparison with other marker gene selection methods
To directly compare NS-Forest v4.0 for cell-type-specific 
marker gene selection, four other methods: COMET 
[22], RankCorr [23], scGeneFit [24], and MarkerMap 
[25] were considered. Two of the methods were previ-
ously directly compared with NS-Forest v2.0 [13]. Here 
we present the results of all six methods (two versions of 
NS-Forest and four other methods) applied on the Vil-
lani et al. dataset [26], which deep sequenced ~ 1,000 cells 
from healthy blood samples across six dendritic cell (DC) 
and four monocyte (Mono) populations. To better delin-
eate cell types, we utilized the Louvain clustering done in 
Aevermann et al. [13], which merged the DC2 and DC3 
clusters as well as the Mono1 and Mono3 clusters, result-
ing in eight distinct clusters (Fig. 6A). Each method was 
iteratively run, generating a set of marker genes for each 
cluster (Supplementary Table 7). Dotplots of the markers 
identified by each method are shown in Fig. 6B-G, where 
NS-Forest v4.0 showed the cleanest cluster-specific 
expression with genes that show strong binary expression 
patterns. NS-Forest v4.0 identified the fewest marker 
genes (14 unique markers for the 8 clusters), followed by 
COMET, MarkerMap, and scGeneFit (15 unique mark-
ers), NS-Forest v2.0 (16 unique markers), and RankCorr 
(28 unique markers). As expected, NS-Forest v4.0 had 
the highest binary scores for its selected genes (Fig. 6H). 
The classification metrics of all six methods are shown 
side-by-side in Fig.  6I-L. Comparing the median F-beta 
scores, NS-Forest v2.0 had the highest score (0.87), fol-
lowed by scGeneFit (0.82), RankCorr (0.80), NS-Forest 
v4.0 (0.79), COMET (0.68), and MarkerMap (0.24). The 
slightly lower F-beta for NS-Forest v4.0 is an expected 
trade-off for the higher binary scores. Most methods had 
relatively high PPVs of 0.8 or greater. The recall values 
tended to be lower with broader ranges, of which scGen-
eFit had the highest median recall close to 0.8. It is inter-
esting to note that scGeneFit identified some negative 
marker genes (e.g., HLA-DRB4 and TYROBP in Fig. 6E), 
which is helpful for ruling out false negatives in a clas-
sification model but would be difficult to use for certain 
downstream experiments in practice. The On-Target 
Fractions displayed greater variabilities, where the two 
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versions of NS-Forest had the top two median On-Target 
Fraction values, consistent with the amount of off-diago-
nal expression observed in the dotplots.

Performance evaluation in simulation studies
To further understand the properties of the metrics used 
in NS-Forest, simulation studies were conducted using a 
zero-inflated three-component mixture model with vary-
ing zero inflation levels (see Methods). Figure 7A shows 
the simulated gene expression patterns. Genes 1–5 are 
true marker genes with simulated gene expression pat-
terns (i-v); genes 6–10 are non-marker genes with expres-
sion patterns (vi-x); genes 11–100 are null genes with 
expression pattern (xi). The null genes can be considered 
as “white noise” genes, the inclusion of which simulates 
the long list of non-informative genes as input features 
to the random forest model in this simplistic simulation 
design. Figure 7B-C show the performance of the gene-
centric metrics Binary Score and On-Target Fraction with 
respect to the varying zero inflation levels. Evaluating in 
cluster 1, i.e. the target cluster, both metrics show large 
error bars for larger zero inflation levels. The order of the 
performance curves of genes 1–5 are expected, where 
gene 1 is the most ideal marker gene for cluster 1, with 
a Binary Score = 1 and an On-Target Fraction = 1 across 
all zero inflation levels. In Fig.  7B, genes 1–3 have high 
Binary Scores, while genes 4–5 have decreased Binary 
Scores and high variabilities when the zero inflation 
levels become high, suggesting that the Binary Score is 

robust to patterns (i-iii) where there is little-to-no expres-
sion in the non-target clusters, and effective for patterns 
(iv-v) where there are quantitatively lower expression in 
the non-target clusters. In Fig.  7C, the On-Target Frac-
tion effectively captures the drop of genes 2–3 from gene 
1 due to the changes in patterns (i-iii), suggesting that the 
Binary Score and On-Target Fraction capture comple-
mentary properties of a marker genes.

NS-Forest v2.0/v3.9 and v4.0 were both applied to the 
simulated data. Since true marker genes were only simu-
lated for clusters 1–5, the cluster-centric performance 
metrics are shown in Fig.  8 for these clusters. While 
the F-beta score, PPV, and On-Target Fraction of the two 
versions of NS-Forest are very similar, recall is signifi-
cantly higher (t-test p-value = 2.2e-16) and less variable 
in v4.0. The performance metrics that show a prominent 
decreasing trend with respect to the zero inflation levels 
are F-beta score for cluster 1 and recall for all clusters. 
The impact on recall values is expected as a direct con-
sequence of increased false negatives with zero infla-
tion. The decreasing trend of F-beta score in cluster 1 
suggests that the misclassification of cells in cluster 1, 
where there is a perfect marker (i.e., gene 1), comes from 
the false negatives when the perfect marker expression 
was impacted by dropouts. The simulation studies also 
showed an interesting observation of the chances of 
selecting non-marker genes for the two NS-Forest ver-
sions. Out of the 20 iterations (Supplementary Fig.  8), 
the non-marker genes 6–10 were randomly selected by 

Fig. 6 Direct comparison of six marker gene selection methods on an immune cell dataset. A UMAP of the clusters produced by Louvain clustering 
for the monocyte and dendritic cell types described in Villani et al. [26]. B-G Dotplots of the marker genes selected by NS-Forest v2.0 (B), NS-Forest 
v4.0 (C), RankCorr (D), scGeneFit (E), COMET (F), and MarkerMap (G). H Boxplots of Binary Expression Scores of the marker genes selected by each 
method. I-L Boxplots of F-beta score, PPV (precision), recall, and On-Target Fraction for performance comparison across all six methods on the Villani 
et al. dataset
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NS-Forest v2.0/v3.9 at all zero inflation levels, but were 
not selected by NS-Forest v4.0 in most of the simula-
tions. Among all simulation results, the chance of select-
ing any non-marker gene is 13% (223/1672 = total count 
of selecting genes 6–10 as marker genes / total count of 
selected marker genes) in v2.0/v3.9 and 0.3% (5/1481) in 
v4.0.

Discussion
This paper describes major algorithmic refinements 
made in NS-Forest v4.0 and its improved performance 
on the human brain MTG dataset used to develop the 
previous versions, as well as its performance on datasets 
from the human kidney and lung. The main motivation 
for developing version 4.0 was to improve the marker 
gene selection performance on closely related cell types 
by enriching for markers that exhibit the pattern of 
being highly and uniquely expressed in their target cell 

types without losing a significant amount of classifica-
tion power. The BinaryFirst step was introduced in the 
NS-Forest workflow to enrich for candidate genes that 
exhibit the desired gene expression pattern. It is essen-
tially an informative dimensionality reduction approach 
that effectively reduces the size of the set of candidate 
genes prior to the random forest classification step, 
which is usually the most time-consuming part of the 
algorithm. As a result, the overall runtime of the algo-
rithm is substantially reduced. To explicitly demonstrate 
the improvements made by this algorithmic refinement, 
we introduced the On-Target Fraction metric that quan-
tifies how well the NS-Forest marker genes are exclu-
sively expressed in each distinct cell type.

Overall, this new version of NS-Forest demonstrated 
clear improvement in the human MTG brain dataset, 
which is the most complex organ evaluated in this study. 
Additional datasets representing the human kidney and 

Fig. 7 Performance evaluation in simulation studies. A Examples of simulated gene expression patterns with 20% zero inflation. Simulation design 
is summarized in the text box. B-C Evaluation of the gene-centric metrics – Binary Score and On-Target Fraction – with respect to zero inflation 
in the simulations
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lung were used to validate NS-Forest’s performance on 
data from other organs. NS-Forest v4.0 is now a com-
prehensive Python package that not only implements the 
algorithm for obtaining the marker genes, but also sup-
ports the marker gene evaluation functions in a machine 
learning framework for cell type classification. In this 
paper, we also presented a comparative analysis of the 
NS-Forest marker genes and other popular marker gene 
lists. We formally established the notion of cell type clas-
sification marker genes, which are different from the 
notion of differentially expression genes. In the head-
to-head comparison using the HLCA dataset with half a 
million cells, the NS-Forest marker genes showed supe-
rior performance over the HLCA, CellRef, ASCT + B and 
Azimuth marker sets.

One of the innovations of the NS-Forest approach is 
the enrichment of binary genes ranked by the novel 
Binary Expression Score. The algorithm also outputs 
the top 10 binary genes as part of the supplementary 
results, which may serve as an extended list of genes of 
interest for future study or experiment design. As one 
future direction to explore, we also looked at the poten-
tial co-expression pattern of these binary genes in the 
HLCA dataset (the binary genes can be found in Sup-
plementary Table 6). In the co-expression heatmap (Sup-
plementary Fig.  9), we highlighted regions where the 
cell-type-specific binary genes showed very strong co-
expression (e.g., the black box) and where the cell-type-
specific binary genes of several related clusters showed 

overlapping co-expression (e.g., the yellow box). These 
patterns can be observed along the diagonal for many 
of the HLCA cell types at the finest level annotation. 
Though NS-Forest is not explicitly designed for detect-
ing cell-type-specific co-expression gene networks, the 
binary gene list does identify upregulated co-expression 
gene networks for many cell types, which may be futher 
explored to provide a complementary perspective to 
those co-expression inference methods based on statisti-
cal approaches [27, 28].

NS-Forest marker genes can be used for multiple 
downstream experimental investigations, such as spatial 
transcriptomics gene panel design in the SpaceTx con-
sortium [29], and to produce marker gene sets designed 
to capture specific cell type properties. One of the main 
applications of NS-Forest identified marker genes is 
contributing to the definition of ontological classes of 
scRNA-seq data-driven cell types for incorporation into 
the official Cell Ontology [21], as NS-Forest provides the 
minimum combinations of marker genes that can serve 
as a set of definitional characteristics of the cell types 
[21]. Such efforts have already begun, as NS-Forest has 
contributed to the BRAIN Initiative Cell Census Net-
work (BICCN) data ecosystem to derive the necessary 
and sufficient marker gene knowledge [30]. As such, 
the Provisional Cell Ontology (PCL) is generated in this 
manner for the human, mouse, and marmoset primary 
motor cortex [31]. Among the general single cell com-
munity, there is a current lack of a formal, standardized 

Fig. 8 NS-Forest performance in simulation studies. Evaluation of the cluster-centric performance metrics – F-beta score, PPV, recall 
and On-Target Fraction – for NS-Forest v2.0/3.9 and v4.0 with respect to zero inflation in the simulations. Using two-sample t-test (v2.0/3.9 vs. v4.0), 
p-values = 0.7919 for F-beta score, 0.5738 for PPV, 2.2e-16 for recall, 0.2798 for On-Target Fraction
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representation of cell type clusters derived from the 
tremendous amount of scRNA-seq data and their tran-
scriptional characterization that is widely accepted by 
the scientific community. One of the challenges associ-
ated with formalizing such a representation is the aspect 
of scaling up the semantic knowledge representations to 
keep up with the rate at which single cell transcriptomic 
data and analyses are being produced today. To this end, 
NS-Forest appears well-suited to help alleviate some of 
the challenges associated with such a task, especially with 
the enhancements introduced in version 4.0.

Methods
BinaryFirst step in NS‑Forest v4.0
The BinaryFirst step is introduced in version 4.0 of NS-
Forest and is implemented in the gene pre-selection step 
of the workflow. Essentially, this process reduces the 
number of genes that are later considered in the random 
forest step as candidate marker genes for each cluster 
by only selecting genes with a Binary Expression Score 
greater than or equal to a dataset-specific threshold 
based on the distribution of this score (Fig. 2). This step 
is important because it substantially reduces the feature 
space that is input into the random forest, signficantly 
decreasing the runtime of NS-Forest. The Binary Expres-
sion Scores are first calculated for each gene-cluster pair 
in the dataset using the formula defined in the paper 
detailing version 2.0 [13], and the formula is restated in 
the Binary Expression Score section below. Users can 
specify which type of threshold is used in the BinaryFirst 
step: ‘none’, ‘BinaryFirst_mild’, ‘BinaryFirst_moderate’, or 
‘BinaryFirst_high’. If the threshold is ‘none,’ no filtering 
is performed, and all genes in the input anndata object 
are considered for the iterative search in the random for-
est step. The other threshold values are calculated based 
on the distribution of Binary Expression Scores from all 
genes, and so these values vary depending on the input 
dataset used. The mild threshold is set as the median 
Binary Expression Score, the moderate threshold is set 
as the mean Binary Expression Score plus the standard 
deviation of all scores, and the high threshold is set as the 
mean Binary Expression Score plus two times the stand-
ard deviation. In version 4.0, the default is set to ‘Bina-
ryFirst_high,’ which is the most stringent threshold that 
filters the most genes.

The median Binary Expression Score in a scRNA-seq 
dataset is often 0, as is the case for the human MTG, kid-
ney, and lung datasets used in this paper. This is expected 
because most genes are not useful for distinguishing 
granular cell types at single cell resolution. In such cases, 
the ‘BinaryFirst_mild’ model in version 4.0 is equivalent 
to the model used in version 2.0/3.9, since no initial fil-
tering is done when NS-Forest is run with this threshold. 

Thus, the results obtained from running version 4.0 with 
the ‘BinaryFirst_mild’ threshold is equivalent to results 
obtained from running NS-Forest version 2.0 or 3.9 (no 
algorithmic difference between versions 2.0 and 3.9). 
By default, NS-Forest v4.0 uses the ‘BinaryFirst_high’ 
threshold, unless otherwise stated.

For the human middle temporal gyrus (MTG) data-
set, the median Binary Expression Score is 0, indicat-
ing that more than half of the original input genes 
have zero median expression in these clusters and are 
therefore non-informative. In the human MTG data-
set, the mean Binary Expression Score is 0.167 and the 
standard deviation is 0.249, implying the thresholds 
for this specific dataset are as follows: mild = 0, moder-
ate = 0.176 + 0.249 = 0.415, high = 0.176 + 2*0.249 = 0.664. 
For the human kidney and lung datasets, the median 
Binary Expression Score is also 0. The moderate and high 
thresholds are 0.102 and 0.194 for the kidney dataset, 
respectively, and 0.118 and 0.222 for the lung dataset, 
respectively.

All runtimes discussed in the Results section detailing 
the improvement obtained with the BinaryFirst step were 
obtained from running NS-Forest through jobs that were 
submitted to the Expanse supercomputer system in the 
San Diego SuperComputer Center.

Binary expression score
Here is a recap of the Binary Expression Score from our 
earlier study [13]. The Binary Expression Score is defined 
as below. For each gene g evaluated in target cluster T ,

where mgT = median expression of gene g in the tar-
get cluster T  , and mgi = median expression of gene g in 
cluster i for i = 1, . . . , n . The mathematical symbol (·)+ 
denotes the positive part of a real valued function, mean-
ing max(·, 0) . In the most ideal case where mgT = x for 
some positive value x > 0 and mgi = 0 for all i  = T  , 
the score ScoregT = 1 ; in the least ideal case where 
mgT < mgi for all i  = T  , the score ScoregT = 0 . The 
Binary Expression Score has a range of [0,1].

On‑Target fraction metric
In version 4.0, a new On-Target Fraction metric is pro-
vided, to quantify the expression specificity of the marker 
genes with respect to their target cell types. In previous 
versions, the algorithm reported the F-beta score and 
Positive Predictive Value (PPV) together with the true/
false positives/negatives (i.e., TP, FP, TN, FN), which are 
metrics that quantify the discriminative power of each set 
of markers for their cell type classification performance. 

ScoregT =

n
i=1 1−

mgi

mgT

+

n− 1
,
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However, these metrics do not fully capture how well NS-
Forest achieves the ideal scenario of identifying mark-
ers for each cluster that are exclusively expressed in that 
cluster. To make a clear distinction, we refer to F-beta 
score, PPV, and recall as classification metrics, and On-
Target Fraction as an expression metric.

The On-Target Fraction is defined for each marker gene 
g in target cluster T  as,

where mgT = median expression of marker gene g in tar-
get cluster T  , and mgi = median expression of marker 
gene g in cluster i for i = 1, . . . , n . This metric has a range 
of [0,1], with a value of 1 being the ideal case where this 
marker gene is "exclusively” expressed in more than half 
of the cells in its target cluster and in fewer than half of 
the cells in all other clusters. Due to the zero-inflation 
nature of scRNA-seq data, this metric can effectively 
capture those genes that have abundant expression 
exclusively within the target cluster. At the cluster level, 
we report the On-Target Fraction for each cluster using 
the median FractiongT of its marker genes. We used the 
median as a summary statistic when reporting the On-
Target Fraction to account for the non-normal nature of 
scRNA-seq gene expression distribution.

Simulation design
The same simulation model is used to generate the 
simulated data as reported earlier [13]. A zero-inflated 
three-component mixture model is used in the simula-
tion design to reflect the dropout technical artifact (zero-
inflation), background and positive expression signals as 
observed in real data distributions. Let X denote the gene 
expression value. X follows a mixture distribution such 
that.

The zero-inflation component is δ0(x) = probabil-
ity density function of the degenerate distribution at 
0 ; the Gamma distribution component fGamma(x) 
= probability density function of the distribution 
Gamma(α = 1,β = 1) with mean = 1, representing the 
background expression; and the Normal component 
fNormal(x) = probability density function of the distribu-
tion Normal(µ = µi, σ

2 = 1) for cluster i , representing 
the positive expression signals. The parameters π1,π2, 
and π3 corresponds to the weights of each component 
such that π1,π2,π3 > 0 and π1 + π2 + π3 = 1.

Based on the above model, 10 genes with expression 
patterns (i-x) were simulated across 20 clusters with 300 

OnTarget FractiongT =
median expression in target cluster

sum of median expression across all clusters
=

mgT
∑n

i=1mgi
,

P(X = x) = π1 · δ0(x)+ π2·fGamma(x)+ π3·fNormal(x)

cells in each cluster (Fig. 7). Genes 1–5 are true marker 
genes with expression patterns (i-v), where µT = 10 for 
the true targeting cluster and µi = 0,0, 0,5, 7, ∀i �= T  for 
genes 1–5, respectively. Genes 6–10 are non-marker 
genes receiving the same level of signals across all clus-
ters as shown in expression patterns (vi-x), where 
µi = 7,6, 5,4, 3, ∀i = 1, . . . , 20 for genes 6–10, respec-
tively. In this simulation design, the Gamma component 

is set at constant π2 = 0.1 . While the zero-inflation com-
ponent π1 varies from 0.05 to 0.45, the Normal compo-
nent is π3 = 0.9− π1 . Other than the 10 genes receiving 
expression patterns, 90 non-expression genes were simu-
lated as shown in pattern (xi), where π3 = 0 . In total, 100 
genes and 6000 cells were simulated. This simulation was 
repeated 20 times.

NS‑Forest python package
With the continuous refinements of the NS-Forest algo-
rithm and its marker evaluation metrics, NS-Forest has 
become a comprehensive software package. To provide 
a user-friendly software package, NS-Forest v4.0 is now 
modularized, consisting of 4 main functional modules: 
preprocessing, NSForesting, evaluating, and plotting. 
NS-Forest v4.0 takes in an anndata [15] object in.h5ad 
format that contains a cell-by-gene expression matrix 
and the cell type cluster membership column stored in 
the observation-level (.obs) metadata matrix of the data 
object.

An optional but suggested step before preprocessing is 
to generate a hierarchical clustering dendrogram of the 
cell type clusters on the full dataset. This occurs before 
any gene filtering because the dendrogram should be 
consistent between various preprocessing methods. In 
the preprocessing module, the first step is to calculate 
the median expression matrix for each gene in each clus-
ter. The default positive_genes_only parameter is true, 
which filters for genes with a positive median expression 
in at least one cluster. (Note that this preprocessing step 
based on medians is specific to NS-Forest and should not 
be used if evaluating the performance of marker genes 
produced by other approaches.) Based on the median 
expression matrix, the Binary Expression Score of each 
gene (positive genes only by default) is calculated in each 
cluster. The Binary Expression Score has a range of [0,1], 
with values closer to 1 indicating a higher level of binary 
expression (i.e., the gene is expressed in the target clus-
ter and not others). The pre-calculated median expres-
sion matrix and the Binary Expression Score matrix are 
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saved in the unstructured metadata slot (.uns) of the data 
object.

In the NSForesting module, the BinaryFirst step is 
implemented with the gene_selection parameter that 
determines the BinaryFirst criterion (None: 0, Binary-
First_mild: median, BinaryFirst_moderate: mean + std, 
and BinaryFirst_high: mean + 2std), which filters out 
genes below the chosen threshold. The main step in the 
NS-Forest algorithm is building a random forest clas-
sifier for each cluster that is trained on the genes that 
passed the gene_selection criteria. In this step, each 
gene is ranked by the Gini Impurity index and the n_
top_genes with the highest Gini index are then reranked 
by their pre-calculated Binary Expression Scores. The 
n_gene_eval value indicates how many genes from the 
reranked candidate gene list are input into the decision 
tree evaluation for determining the best combinatorial 
marker genes as final output. A single split decision tree 
is built for each evaluated gene. Gene combinations of all 
set lengths are evaluated, and the combination with the 
highest F-beta score is considered the final set of NS-For-
est marker genes for that cluster. The performance met-
rics returned from this module for each cluster are the 
F-beta score, PPV (precision), recall, TP, FP, TN, FN, and 
On-Target Fraction.

The evaluating module can be called independently 
without calling the preprocessing and NSForesting mod-
ule. This module is useful for calculating the metrics for 
a user-input marker gene list with paired cluster names 
to compare the cell type classification performance and 
marker expression across different marker gene lists. We 
provide an option of using mean instead of median for 
the On-Target Fraction calculation, to account for cases 
where a user-input gene is only expressed in a small pro-
portion of cells in the target cluster and has absolutely no 
expression in other clusters.

The plotting module creates the scanpy [15] dot plot, 
stacked violin plot, and matrix plot figures for visualiza-
tion of the NS-Forest or user-input marker genes with 
clusters organized according to the dendrogram order 
(from the preprocessing step) or in order corresponding 
to user-input. Other plotting functions include creating 
interactive plotly [32] boxplots and scatter plots, which 
are useful for comparing metrics and identifying clusters 
of interest.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s44330- 024- 00015-2.

Supplementary Figure 1. Comparing performance of using different Bina-
ryFirst thresholds in NS-Forest v4.0 on specific subclades within human 
MTG dataset. (A) Hierarchical dendrogram derived in the original human 
MTG study with labelled and color-coded subclades (https:// github. com/ 

Allen Insti tute/ MOp_ taxon omies_ ontol ogy/ tree/ main). (B) Heatmaps 
of markers from the human middle temporal gyrus (MTG) dataset 
generated from NS-Forest v4.0 with ‘BinaryFirst_mild’, ‘BinaryFirst_mod-
erate’, and ‘BinaryFirst_high’ thresholds. The regions on the heatmaps 
highlighted by the orange boxes correspond to the identified markers 
for the cell types in specific subclades (VIP, PVALB, and L4 subclades) 
that are known to be more similar to each other and thus, more difficult 
to distinguish. The colors correspond to the normalized median expres-
sion level (log2-transformed counts per million) for the marker gene 
(rows) in a given cell type cluster (columns), with high expression in 
red/yellow, and low expression in blue/white. The clusters are ordered 
according to the hierarchical dendrogram provided in the original 
study shown in (A). (C) Median On-Target Fraction values within each of 
the three specific subclades across these three BinaryFirst thresholds.

Supplementary Figure 2. Comparison of On-Target Fraction distribution 
in major subclades of Human MTG dataset across BinaryFirst thresholds. 
Boxplots comparing the distribution of the On-Target Fraction values 
within each of the three specific subclades in the human MTG dataset 
(L4, PVALB, and VIP subclades) across the mild, moderate, and high 
BinaryFirst thresholds are shown.

Supplementary Figure 3. Additional investigation of mean + 3 standard 
deviations (SD) BinaryFirst threshold evaluated in the human MTG 
dataset. (A-B) Heatmaps of NS-Forest marker genes using the BinaryFirst 
threshold of mean + 3 SD in the human MTG dataset, without and 
with the VIP, PVALB, and L4 subclades highlighted. (C-D) Performance 
metrics using the mean + 3 SD threshold in the human MTG dataset, 
directly comparable with Fig. 3D and Supplementary Fig. 1C. (E) Scatter 
plots and the best linear relationship fitted for the number of input 
genes to the random forest (RF) step after BinaryFirst filtering using 
different thresholds with respect to the On-Target Fraction values per 
cluster.

Supplementary Figure 4. Evaluating performance of NS-Forest on lung 
L4 and L3 subclass datasets. (A) Heatmaps of NS-Forest v2.0/v3.9 and 
v4.0 markers from the L4 and L3 subclasses of the human lung. The 
colors correspond to the normalized median expression level (log2-
transformed counts per million) for the marker gene (rows) in a given 
cell type cluster (columns), with high expression in red/yellow, and 
low expression in blue/white. The clusters are ordered according to 
the hierarchical ordering in the dendrogram generated by the scanpy 
package (scanpy.tl.dendrogram) using default settings. (B) Comparison 
of the performance metrics corresponding to the NS-Forest results 
shown in (A).

Supplementary Figure 5. Distribution of median gene expression per 
cluster and Binary Expression Score in human MTG, kidney, and lung 
datasets. First row: histograms of distribution of median gene expres-
sion values of genes expressed in all clusters in human MTG, kidney, 
and lung datasets. X-axis displays the range of median gene expression 
values in each dataset, and the y-axis displays the frequency of each 
median gene expression value (log scale). Second row: histograms of 
distribution of Binary Expression Score values of genes in these three 
datasets. X-axis ranges from 0 to 1 (representing the possible values the 
binary expression score can be), and the y-axis displays the frequency 
of each binary score value (log scale). All distributions are highly 
right-skewed.

Supplementary Figure 6. Dotplots of HLCA, CellRef, ASCT + B, and 
Azimuth marker genes on HLCA core cell types. (A) 162 HLCA markers 
across 61 HLCA cell types. (B) 115 CellRef markers across 33 HLCA cell 
types. The highlighted example is where the On-Target Fraction is per-
fect but recall is low. (C) 80 ASCT + B markers across 18 HLCA cell types. 
(D) 535 Azimuth markers across 56 HLCA cell types.

Supplementary Figure 7. NS-Forest consistently outperforms other 
published lung marker genes in classification performance. (A-D) Scat-
ter plots comparing F-beta scores for each cell type using NS-Forest 
markers vs. HLCA, CellRef, ASCT + B, and Azimuth markers. (E–H) Scatter 
plots comparing PPV (precision) for each cell type using NS-Forest 
markers vs. HLCA, CellRef, ASCT + B, and Azimuth markers. (I-L) Scatter 

https://doi.org/10.1186/s44330-024-00015-2
https://doi.org/10.1186/s44330-024-00015-2
https://github.com/AllenInstitute/MOp_taxonomies_ontology/tree/main
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plots comparing recall for each cell type using NS-Forest markers vs. HLCA, 
CellRef, ASCT + B, and Azimuth markers. (M-P) Scatter plots comparing 
On-Target Fraction for each cell type using NS-Forest markers vs. HLCA, 
CellRef, ASCT + B, and Azimuth markers. The highlighted example is where 
the On-Target Fraction is perfect but recall is low.

Supplementary Figure 8. Simulation results of NS-Forest v2.0/3.9 and v4.0. 
Heatmap of the number of times that a gene is selected as NS-Forest 
marker gene in the simulations. By the simulation design, genes 1–5 are 
true marker genes, genes 6–10 are non-marker genes, and genes 11–100 
are null genes (not shown as they won’t be selected by design).

Supplementary Figure 9. Heatmap of co-expression for the binary genes 
outputted from the NS-Forest algorithm with the HLCA dataset.

Supplementary Table 1. NS-Forest v4.0 results of the human brain middle 
temporal gyrus dataset.

Supplementary Table 2. NS-Forest v4.0 results of the human kidney 
dataset.

Supplementary Table 3. NS-Forest v4.0 results of the human lung L5 
subclass dataset.

Supplementary Table 4. NS-Forest v4.0 results of the human lung L4 
subclass dataset.

Supplementary Table 5. NS-Forest v4.0 results of the human lung L3 
subclass dataset.

Supplementary Table 6. NS-Forest v4.0 results of the Human Lung Cell 
Atlas dataset.

Supplementary Table 7. Marker genes selected for the immune dataset by 
six methods.
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