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METHODOLOGY

PSSR2: a user-friendly Python package 
for democratizing deep learning-based 
point-scanning super-resolution microscopy
Hayden C. Stites1 and Uri Manor1,2* 

Abstract 

Background To address the limitations of large-scale high quality microscopy image acquisition, PSSR (Point-Scan-
ning Super-Resolution) was introduced to enhance easily acquired low quality microscopy data to a higher quality 
using deep learning-based methods. However, while PSSR was released as open-source, it was difficult for users 
to implement into their workflows due to an outdated codebase, limiting its usage by prospective users. Additionally, 
while the data enhancements provided by PSSR were significant, there was still potential for further improvement.

Methods To overcome this, we introduce PSSR2, a redesigned implementation of PSSR workflows and methods built 
to put state-of-the-art technology into the hands of the general microscopy and biology research community. PSSR2 
enables user-friendly implementation of super-resolution workflows for simultaneous super-resolution and denois-
ing of undersampled microscopy data, especially through its integrated Command Line Interface and Napari 
plugin. PSSR2 improves and expands upon previously established PSSR algorithms, mainly through improvements 
in the semi-synthetic data generation (“crappification”) and training processes.

Results In benchmarking PSSR2 on a test dataset of paired high and low resolution electron microscopy images, 
PSSR2 super-resolves high-resolution images from low-resolution images to a significantly higher accuracy than PSSR. 
The super-resolved images are also more visually representative of real-world high-resolution images.

Discussion The improvements in PSSR2, in providing higher quality images, should improve the performance 
of downstream analyses. We note that for accurate super-resolution, PSSR2 models should only be applied to super-
resolve data sufficiently similar to training data and should be validated against real-world ground truth data.

Introduction
The acquisition of high-quality microscopy data is time 
consuming and imperfect. Improvements to one of image 
resolution, SNR (Signal to Noise Ratio), imaging speed, 
or sample preservation cannot come without cost to 

another, requiring difficult and undesirable tradeoffs 
for imaging experiments. To mitigate this effect, PSSR 
(Point-Scanning Super-Resolution) was introduced to 
effectively optimize these parameters to otherwise unat-
tainable quality [1]. Using deep learning-based super-
resolution, low quality images (low resolution, low SNR) 
could be restored to higher quality (high resolution, high 
SNR). Additionally, the use of a “crappifier” to semi-
synthetically degrade high quality images to their low 
quality counterparts via downsampling and noise injec-
tion removed the requirement of manually acquiring a 
training dataset comprising perfectly aligned images. A 
super-resolution neural network (i.e. any neural network 
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architecture capable of predicting images of higher res-
olution) would then be trained by providing it with the 
low quality images generated via crappifier and tasking 
it with the prediction/super-resolution of the ground 
truth high quality images as training target. The origi-
nal PSSR model utilized a Residual UNet (ResNet34) 
neural network architecture. Features are extracted via 
encoder blocks which progressively downscale the image 
followed by decoder blocks which progressively upscale 
the image, where respective encoder-decoder blocks are 
connected via skip connections. The model was trained 
with a mean squared error (L2) loss function, which pro-
duced excellent results validated by blinded analysis of 
relevant biological structures. This included the identifi-
cation of presynaptic vesicles that are typically challeng-
ing, if not impossible, to accurately detect at 8nm pixel 
size, but were much more clearly visible in the PSSR 
super-resolved images at 2nm pixel size. As many large-
scale connectomics EM imaging datasets are collected at 
8nm pixel size in order to accelerate data acquisition, the 
ability to super-resolve 8nm to 2nm pixel sizes enables 
analysis of synaptic organelles that would otherwise be 
impossible.

However, the original version of PSSR was limited in 
implementation. For example, it only allowed for super-
resolution of simple single-frame and multi-frame vide-
omicroscopy timelapse data, not accounting for the usage 
of more complex multidimensional data where the ben-
efits of PSSR may be even greater. The crappifiers used 
to generate training data were also imperfect, potentially 
contributing to decreased model accuracy when applied 
to real-world data.

Additionally, PSSR was also not designed with the bulk 
of the biological and imaging research community in 
mind. As machine learning becomes more widely estab-
lished, the accessibility of related software becomes even 
more crucial. An experimental microscopist does not 
necessarily have experience in machine learning and/or 
any given programming language, and may not be able 
to fully benefit from, if at all, a workflow they cannot 
easily utilize. Underscoring this, the codebase was not 
structured as software, rather as a collection of undocu-
mented functions that are not sufficient for customized 
usage without additional implementation. Addition-
ally, the original code no longer runs on modern ver-
sions of the packages it is built on, which has caused 
difficulty for many prospective users. Thus, even though 
PSSR was released as open-source, it failed to maximize 
democratization.

To extend the democratization of PSSR, we intro-
duce PSSR2, a Python package featuring a customiz-
able framework for the creation of deep learning-based 
super-resolution/denoising imaging workflows on a wide 

variety of microscopy data including both light and elec-
tron microscopy. To this end, we redesigned the PSSR 
approach from the ground up with ease of use and wide 
applicability in highest priority, while also addressing the 
longstanding issues facing the original implementation. 
Additionally, while the main objective of PSSR2 is to pro-
vide an accessible yet fully-featured package for practi-
cal microscopy super-resolution, PSSR2 also improves 
on existing PSSR algorithms to allow for more accurate 
model training and subsequent model predictions.

The usage of the Python programming language 
allows for a user-friendly modular package-based inter-
face and integration with widely used research software, 
such as PyTorch [2] and Napari [3]. PSSR2 is accessible 
through multiple entry points of varying complexities 
and required technical knowledge, while all including the 
same core features. For advanced users, lower level fea-
tures are exposed in a way that allows for straightforward 
modification of existing processes and addition of cus-
tom logic. PSSR2 also boasts newly trained models with 
state-of-the-art performance on real-world data, sub-
stantially improving on prior PSSR implementations and 
other competing approaches.

Methods
Application features
In order to produce a straightforward yet widely applica-
ble PSSR2, we completely rebuilt PSSR from the ground 
up. In doing so, we simplify and improve important 
elements of the PSSR workflow while simultaneously 
allowing PSSR2 to properly run on a wider range of envi-
ronments and dependency versions.

The PSSR2 package comprises six submodules under 
the main pssr module.

• train: Training and optimization functions
• predict: Prediction and benchmarking functions
• data: Datasets and functions for handling and gen-

erating paired high-low-resolution image pairs
• crappifiers: Pre-implemented and user definable 

crappifiers for semi-synthetically degrading high-res-
olution images into their low-resolution counterparts

• models: Pre-implemented neural network architec-
tures

• util: Various utility functions

The majority of workflow configuration can be done 
solely in the selection and definition of objects within 
these modules. For many use cases, all relevant logic is 
predefined within corresponding objects, allowing users 
to remove unnecessary boilerplate code if desired. If 
accessing PSSR2 via its package interface, the user is not 
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required to write more than a few lines of code defining 
objects to train and/or run a state-of-the-art model.

Perhaps the greatest source of workflow variance is 
in the input format and application of microscopy data. 
To efficiently provide a standardized interface for data 
loading, we separate our datasets into two categories: 
image datasets, which deal with preprocessed images, 
and sliding datasets, which deal with unprocessed data 
across multiple tiles within a larger image (i.e. a large 
image to be divided into multiple smaller images). Tiles 
are defined by horizontal and vertical positions within 
an image if applicable, where any additional dimensional 
data is separated into multiple frames of the same tile as 
set by a user-defined configuration. We separate train-
ing and validation sets randomly by tile, rather than by 
frame, because different frames from the same tile may 
be overly similar to one another, which may lead to unde-
sirable training data leakage or overfitting. Both dataset 
types are capable of model training and prediction. In 
training, datasets automatically generate semi-synthetic 
low-resolution images from given high-resolution images 
using a configurable “crappifier”. For model predictions, 
datasets load only low-resolution images to be restored 
(i.e. “decrappification”). For model benchmarking, we 
also provide datasets that omit the crappification of high-
resolution images, instead loading real-world high-low-
resolution image pairs.

We designed datasets in this manner to be effectively 
“plug-and-play” while still being comprehensive for as 
many applications and data types as possible. Addition-
ally, the usage of n-dimensional images is supported, 
including those with asymmetrical amounts of dimen-
sions between model inputs and outputs, along with 
the training of models for image denoising tasks. While 
models could be trained on multidimensional images 
in the prior PSSR implementation, we expand the scal-
ability and viability of such an approach beyond the 
single-frame and multi-frame temporal super-resolution 
approaches previously used.

Various pre-implemented neural network architectures 
for image super-resolution are accessible from within the 
package. The included implementations are modified to 
strip away excess dependencies and bloat, and are stand-
ardized to be easily understandable for inexperienced 
users. However, these are solely for ease of use, and more 
advanced users are free to use any PyTorch-based neural 
network architecture.

As the majority of PSSR2 functionality was designed to 
be accessed through simple object interfaces, it allows for 
the seamless implementation of said functionality into 
external applications. In addition to accessing PSSR2 as 
a Python package, its installation comes included with a 
Command Line Interface (CLI) and a Napari graphical 

user interface plugin, each with the same core features 
as the Python package. Both the CLI and Napari plugin 
allow training and prediction using custom defined 
datasets and models. Additionally, the latter allows for 
runtime monitoring of model output images in multi-
dimensional spaces within the Napari viewer. All func-
tions and objects are fully documented in docstrings 
visible in interactive programming environments, which 
are also available along with a user guide in the online 
documentation.

While all accessibility features of PSSR2 are not mutu-
ally exclusive to it, the aforementioned accessibility ele-
ments are often not present in other research software. 
For example, the CSBDeep toolbox for CARE super-
resolution/denoising is notable for being an installable 
software package with documentation. However, some 
accessibility aspects of CSBDeep are not as developed 
as in PSSR2, such as its less exhaustive CLI and docu-
mentation. Although there is nothing prohibitive of cus-
tom user implementation, many features of PSSR2 are 
also not supported out of the box, such as our improved 
crappifiers or runtime data generation. In the original 
manuscript, the previous implementation of PSSR was 
compared to CARE, where PSSR either met or exceeded 
the performance of CARE on both single-frame and 
multi-frame fluorescence images. The performance of 
PSSR2 exceeds the performance of the previous PSSR, as 
we discuss later in this manuscript.

Advancements in PSSR2
PSSR2 overhauls the semi-synthetic data generation 
process (i.e. “crappification”) of its predecessor, contrib-
uting to increased robustness and prediction accuracy 
on real-world data. In the crappification process of the 
prior PSSR implementation, semi-synthetic low-quality 
images (low resolution, high noise) are generated from 
real-world high-quality images (high resolution, low 
noise) by adding noise and then downsampling. However, 
by adding noise first, adjacent noise values are averaged 
together in downsampling contributing to lower noise 
variance, especially in value dependent noise distribu-
tions such as Poisson noise. Though a seemingly minor 
change, we found that by adding noise after downsam-
pling, semi-synthetically generated low-resolution train-
ing images are more representative of real-world images, 
thereby enabling more accurate model training. We 
found that this allowed Poisson noise to be used to great 
success, where even though it is most statistically simi-
lar to the real-world noise processes in a point-scanning 
system, the prior implementation found it performing 
poorly.

We also allow training set images to be crappified on 
statistically independent noise intensity values rather 
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than a set intensity across all images, which allows 
trained models to function on a wider range of input 
data qualities. Additionally, by generating training images 
during runtime rather than before training as did the pre-
vious implementation, it allows the same image to receive 
many distinctly different crappifications (random noise, 
random intensity) across all training epochs. With both 
changes in data augmentation combined we can effec-
tively increase the size of the training dataset by a large 
factor, reducing overfitting and increasing robustness. 
This improved crappifer methodology is the main driver 
of increased PSSR2 performance, as it allows for neural 
network training on data more representative of real-
world low-resolution acquisitions.

We also developed a methodology for measuring the 
amount of noise present in a low-resolution image when 
compared to its corresponding high-resolution image for 
use in properly quantifying crappifier intensities for more 
accurate training data generation. The high-resolution 
image is first downsampled to create a “noiseless” low-
resolution image, the values of which are then subtracted 
from the true low-resolution image to yield a noise pro-
file, i.e. an n-dimensional array representing the noise in 
the low-resolution image. Crappifier parameters are then 
approximated by Bayesian optimization using Gaussian 
processes [4], minimizing the distribution of noise pro-
file values of the semi-synthetic low-resolution image 
generated from fit crappifier parameters against that of 
the true low-resolution image. This methodology allows 
for the direct quantification of crappifier parameters for 
a given set of paired high-low-resolution images, which 
can then be used to generate synthetic low-resolution 
images of similar quality, without human guesswork of 
these parameters. It is important to note that this does 
not take into account the possibility of spatial structure 
for noise, and assumes spatially independent noise (i.e. 
noise randomly spread across the image).

Results
We benchmarked the real-world improvements of PSSR2 
using a test dataset consisting of 42 aligned image pairs 
from different regions of the same tissue sample for both 
high-resolution (512x512 pixels, 2nm pixel size) and 
low resolution (128x128 pixels, 8nm pixel size) images. 
Images were super-resolved using a ResUNet neural 
network architecture, similar to the one used by PSSR 
[5]. While the ResUNet architecture used in our bench-
marking for PSSR2 has 47 trainable layers versus the 34 
trainable layers used in benchmarking PSSR, we found 
these additional layers themselves contribute very little 
to increased performance. The model was trained for 20 
epochs on a runtime-crappified dataset of 38,880 images 
acquired by electron microscopy, taking approximately 

6 hours to train on a Quadro P6000 GPU. For both use-
cases, our benchmarked models were trained with MS-
SSIM + L1 loss [6]. We found this loss function provided 
improved visual clarity over L2 (mean squared error) 
loss, which was used to train the model in the prior PSSR 
implementation. Performance is measured as the abil-
ity of the model to accurately restore the low-resolution 
images to their high-resolution counterparts, with a sim-
ple bilinear upscaling operation used as a control. These 
training and testing datasets were acquired from the 
original PSSR manuscript [1], in which ethics approval 
for animal work was obtained.

In our testing, we found that PSSR2 increased model 
prediction accuracy when compared to the prior PSSR 
implementation in terms of both PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity), widely 
used metrics for quantitatively measuring the similarity 
between correlated images (Fig. 1b). PSNR measures the 
pixel-based error between images, while SSIM meas-
ures higher order visual similarities and is more indica-
tive of visually perceived quality. Strikingly, the SSIM 
performance uplift of PSSR2 against the control more 
than doubled that of the prior PSSR implementation 
(130% relative increase,  p < 0.0001 ), with a less dras-
tic performance uplift in terms of PSNR (16% relative 
increase, p < 0.05).

To prove the merits of PSSR2 on multiple training 
tasks, we also benchmarked image denoising against 
EMDiffuse, another state-of-the-art microscopy image 
restoration tool utilizing diffusion-based deep learning 
models [7]. Using the provided pretrained EMDiffuse 
model on its provided test dataset for 32 images from dif-
ferent regions of the same tissue sample, we found that 
the image denoising predictive accuracy of PSSR2 sur-
passes that of EMDiffuse in terms of pixel-based metrics 
(Fig. 1c), proving its usefulness in a variety of scenarios. 
The performance uplift of PSSR2 against the control is 
much higher than that of EMDiffuse in terms of both 
PSNR (376% relative increase,  p < 0.0001 ) and SSIM 
(0.14 absolute increase, p < 0.0001).

Discussion
We found that PSSR2 achieves state-of-the-art image res-
toration results on both super-resolution and denoising 
tasks. In the results of the super-resolution task, PSSR2 
achieves a much greater performance uplift in the SSIM 
metric than in the PSNR metric. This suggests that while 
PSSR could reliably super-resolve low-resolution images 
with a relatively low pixel-wise error, the predicted 
images lacked the higher order visual similarities to real-
world images that PSSR2 was able to extract. In context 
of the properties that each metric measures, these results 
are indicative of greater visual clarity and more accurate 
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texture in PSSR2 output. This is supported by visual 
examination of the images generated by both PSSR2 and 
the prior PSSR implementation from the test set, each 
using the same low-resolution images as model inputs. 
The increase in image clarity in the PSSR2 generated 
images is apparent, with decreased blur and increased 
sharpness when compared to its predecessor (Fig.  1a). 
The elimination of these artifacts, while maintaining 
robust model performance, should improve the per-
formance of any additional or downstream algorithms/
workflows.

In the results of the image denoising task, PSSR2 dem-
onstrates increased predictive accuracy when compared 
to EMDiffuse. In visually examining image predictions 
from both algorithms, and supported by the test metrics, 
PSSR2 tends to preserve the position of image elements 
more often than EMDiffuse, demonstrating the reliability 
of PSSR2.

PSSR2 models should only be applied to data suffi-
ciently similar to training data for the best accuracy. The 
provided dataset objects should be sufficient for users to 
train their own models on custom data according to their 

needs. It is also strongly encouraged to validate model 
performance on real-world ground truth data. More spe-
cifically, we strongly recommend that the target down-
stream analyses of PSSR2 output match the accuracy and 
precision of analyses performed on ground truth data.

Conclusion
We present here a user-friendly and robust Python pack-
age capable of state-of-the-art deep learning-based 
microscopy super-resolution, easily accessible through 
its integrated CLI and Napari plugin in addition to a 
Python interpreter. PSSR2 allows for the efficient acqui-
sition of high quality microscopy images Offering many 
configurable objects and tools for a variety of use cases 
while being concise and approachable, PSSR2 is designed 
to be accessible to most imaging and biology researchers 
through its simple yet expandable interface. PSSR2 uti-
lizes the widely used PyTorch library, allowing for simple 
integration with state-of-the-art models and architec-
tures. Importantly, PSSR2 expands on the prior imple-
mentation of PSSR to provide more realistic and efficient 
model training on a wide variety of microscopy data and 

Fig. 1 Evaluation of PSSR2 against state-of-the-art microscopy image restoration methods on paired high-low-resolution test sets. a 
Super-resolution ResUNet model predictions of both PSSR2 and the prior PSSR implementation, in comparison to low-resolution inputs 
and high-resolution ground truth from a test set of 42 paired high-low-resolution images. For each set of corresponding images, a close up shows 
the same region of interest where PSSR2 predicts cellular structures (e.g., vesicles) more accurately than PSSR. Scale bar is 0.2µ m. b Image 
restoration performance comparison of ResUNet super-resolution models using the same test set of 42 images trained with either the prior PSSR 
implementation or PSSR2, benchmarked against a bilinear upscaling control. c Image denoising performance of PSSR2-trained ResUNet model 
against an EMDiffuse-pretrained model on a separate EMDiffuse test dataset of 32 paired high-low-quality images, with a bilinear upscaling control. 
All p-values measure the significance of metric performance of PSSR2 against a given image restoration method (b, PSSR; c, EMDiffuse) by paired 
t-test
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use-cases. PSSR2 boasts a significant increase in image 
quality from its predecessor, and outperforms other 
image restoration approaches in accuracy. We hope this 
update provides a meaningful step towards democratiz-
ing access to image enhancement tools for the biological 
imaging community.
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