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Abstract 

Background  Collaborative efforts, such as the Human Cell Atlas, are rapidly accumulating large amounts of sin-
gle-cell data. To ensure that single-cell atlases are representative of human genetic diversity, we need to deter-
mine the ancestry of the donors from whom single-cell data are generated. Self-reporting of race and ethnicity, 
although important, can be biased and is not always available for the datasets already collected.

Methods  Here, we introduce scAI-SNP, a tool to infer ancestry directly from single-cell genomics data. To train scAI-
SNP, we identified 4.5 million ancestry-informative single-nucleotide polymorphisms (SNPs) in the 1000 Genomes 
Project dataset across 3201 individuals from 26 population groups. For a query single-cell dataset, scAI-SNP uses 
these ancestry-informative SNPs to compute the contribution of each of the 26 population groups to the ancestry 
of the donor from whom the cells were obtained.

Results  Using diverse single-cell datasets with matched whole-genome sequencing data, we show that scAI-SNP 
is robust to the sparsity of single-cell data, can accurately and consistently infer ancestry from samples derived 
from diverse types of tissues and cancer cells, and can be applied to different modalities of single-cell profiling assays, 
such as single-cell RNA-seq and single-cell ATAC-seq.

Discussion  Finally, we argue that ensuring that single-cell atlases represent diverse ancestry, ideally alongside race 
and ethnicity, is ultimately important for improved and equitable health outcomes by accounting for human diversity.
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Introduction
In recent years, single-cell technologies, especially sin-
gle-cell RNA sequencing (scRNA-seq) and single-cell 
transposase-accessible chromatin sequencing (scATAC-
seq), have become ubiquitous, revolutionizing our under-
standing of cellular heterogeneity in many biological 

systems. Consequently, many datasets have emerged, 
epitomized by ambitious endeavors such as the Human 
Cell Atlas [1, 2] and the Human Tumor Atlas Network 
[3], which aim to create comprehensive reference maps 
of all human cells in healthy and diseased tissues. These 
datasets hold the potential for groundbreaking discover-
ies in personalized medicine, developmental biology, and 
a myriad of other fields.

The utility and impact of a reference atlas, such as the 
Human Cell Atlas, hinge crucially on its representative-
ness of human diversity. It is imperative to construct the 
reference atlases from a wide array of donors, encom-
passing all ancestries. This diversity is not merely a 
demographic criterion but a fundamental biological 
necessity. Genetic variation across different populations 
can significantly influence gene expression patterns, 
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epigenetic landscapes, and cellular responses to envi-
ronmental stimuli [4–6]. Without a diverse representa-
tion, reference atlases risk harboring biases, potentially 
leading to erroneous biological conclusions and limiting 
their applicability in global health contexts. For example, 
hematological characterization of individuals of Euro-
pean descent has shown significant differences in certain 
blood counts compared with those of African descent [7]. 
Consequently, reference datasets of blood counts con-
structed from predominantly European individuals have 
misled physicians into prescribing inappropriately low 
dosages of chemotherapy for early-stage breast cancer 
patients of African descent, who had different baseline 
ranges of neutrophils, resulting in poorer survival out-
comes [8–10]. Therefore, single-cell atlases cannot truly 
represent the general population if the underlying data 
disproportionately represent or exclude specific ancestry 
groups.

One way to ensure that an atlas is representative of 
human genetic diversity is to require the donors to self-
report their race or ethnicity. Unlike ancestry, which is 
determined by the genetic variants common to popula-
tion groups that are inherited by an individual and can 
be reliably quantified through genetic analyses, race and 
ethnicity are socially constructed and ascribed. Race is 
socially assigned based on physical features, such as skin 
color, and ethnicity is socially assigned based on cultural 
similarities between individuals, such as a common lan-
guage. However, using self-reported race or ethnicity to 
build a single-cell atlas has several drawbacks. People 
might not know or accurately report their complete racial 
or ethnic background, especially if they have a mixed 
heritage. Also, we cannot add self-reported race or eth-
nicity information retroactively to older samples that did 
not collect it. This limitation is particularly relevant given 
the vast repositories of historical single-cell data that 
hold potential insights. Furthermore, in genome-wide 
association studies (GWAS), using diverse groups based 
on ancestry in addition to race and ethnicity improves 
our ability to discover genetic predictors of complex 
traits [11]. Therefore, we need a method to infer ancestry 
directly from the single-cell data itself.

Single nucleotide polymorphisms (SNPs) that have sig-
nificantly different frequencies across different popula-
tion groups can be used to infer an individual’s ancestry. 
Some methods have focused on identifying a small sub-
set of such SNPs that are most informative for determin-
ing population structures [12–14]. Although for some 
applications, such as microarray measurements, having 
a selective set of SNPs is cost-effective, it is more strate-
gic with sparse data like scRNA-seq data to cast a wider 
net; that is, to leverage numerous sites in the genome. 
More recently, whole genome sequencing (WGS) has 

enabled the development of genome-wide approaches 
that account for all the SNPs detected in an individual’s 
genome when assigning ancestry. There are two broad 
approaches for inferring ancestry from whole genome 
sequences: global and local. In global inference, the SNPs 
are used to assign an individual to an ancestral group 
or a mixture of the ancestral groups [15–17]. In local 
inference, each region of the genome of an individual 
is assigned to an ancestral group or a mixture of such 
groups, and the goal is to find the appropriate boundaries 
of these regions [18]. Here, we focus on global inference 
of ancestry from single-cell data.

Two general approaches have been proposed for infer-
ring global ancestry from sequencing data, paramet-
ric and non-parametric. Parametric approaches, such 
as STRU​CTU​RE [16], FRAPPE [19], fastSTRU​CTU​RE 
[20], and ADMIXTURE [15], find the optimal choice of 
parameters for a statistical model where the parameters 
correspond to the fraction that each ancestry group 
contributes to each individual in the data and the fre-
quency of the alleles in each population group. The pos-
terior distribution of the parameters can be found using 
Bayesian methods such as Markov-Chain Monte Carlo 
or approximated efficiently using variational methods 
that rely on optimization. Non-parametric approaches, 
such as EIGENSTRAT [17], take a geometric perspec-
tive and identify the linear combinations of alleles that 
capture the directions of largest variation across the indi-
viduals in the data. The first few directions often capture 
the population structure in the data and can be used to 
assign the ancestral groups (or combinations thereof ) 
to each individual [21]. Importantly, both approaches 
can work without any prior knowledge of the ancestral 
groups or their allele frequencies. The parametric meth-
ods can learn this information while simultaneously fit-
ting a model to the data using expectation maximization, 
whereas non-parametric methods find the directions of 
maximum variation present in the data without relying 
on labeled individuals or population structure.

Our approach builds on the non-parametric methods 
for global inference of ancestry because these methods 
are more robust to missing data and are fast. Specifically, 
similar to EIGENSTRAT, we use principal component 
analysis (PCA) to identify the most informative direc-
tions in allele space for inferring ancestry (see also [22]). 
Unlike EIGENSTRAT, our goal is not to only capture var-
iation in a dataset due to population structure but also to 
use these directions to assign out-of-sample individuals 
to a known ancestry group. Therefore, we used a data-
set of individuals with known (self-reported) ancestry 
from the 1000 Genomes Project (1KGP) [23]. We identi-
fied 4.5 million ancestry-informative SNPs in the 1KGP 
WGS dataset and converted each individual’s genotype 
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to a 4.5 million-dimensional vector where each element 
of the vector corresponds to the allele of the given SNP 
site detected in that individual. Next, we conducted PCA 
on these vectors to find a low-dimensional representa-
tion for them (Fig. 1b). Finally, we obtain a single vector 
representation of each population group by averaging the 
vector representation in PCA space of all individuals in 
the 1KGP data that belong to that population group.

In its final form, our method scAI-SNP (pronounced 
sky-snip) is remarkably easy to use. The user can take 
single-cell data of interest and extract the genotype of 
the 4.5 million ancestry-informative SNP sites. We gen-
otype the SNP sites of scRNA-seq samples using a sim-
ple extension of the tool SComatic [24]. Other methods 
such as Monopogen [25], an elegant work that uses link-
age disequilibrium to accurately detect germline variants, 
can also be used. Importantly, the inference is remarkably 
robust to missing data and sequencing errors and has lit-
tle diminished accuracy when as many as 99% of the SNP 
sites are not detected.

To carry out the inference of ancestry, we simply mul-
tiply the genotype vector of the 4.5 million SNP sites 
(allele vector) by a 4.5 million by 600 dimensional PCA 
projection matrix to obtain a 600-dimensional vector 
representation of the input data. We then use convex 
optimization to find the linear combination of the 26 
mean vectors of each population group that best approxi-
mates the input vector with the constraint that the coef-
ficients of the linear combination are non-negative and 
sum to 1. The computed coefficients are the contribu-
tions of the 26 population groups to the ancestry of the 
individual from whom the single-cell data was obtained. 
A similar approach for linear deconvolution of ancestry 
has been applied to frequencies of variants [26] and prin-
cipal components derived from these frequencies [27] 
but at the level of populations as opposed to individuals. 
We will show that scAI-SNP works for different modali-
ties of single-cell profiling methods, across different tis-
sues and cell types, and even when applied to data from 
cancer cells. The code for scAI-SNP is available on the 
Hormoz Lab GitHub page [28].

Methods
scAI-SNP involves two stages: 1) model training and 2) 
model prediction. Briefly, for model training, we used 
the 1KGP dataset to generate a set of ancestry-informa-
tive SNPs and train an algorithm which takes in a vector 
corresponding to the alleles at these SNP locations and 
outputs a probability distribution over the 26 ancestral 
groups. For model prediction, we first used an extension 
of SComatic [24] to genotype the ancestry-informative 
SNP sites in single-cell data, thereby obtaining the input 
vector to the model and then applied scAI-SNP to infer 

ancestry. Next, we describe each step of training and pre-
diction in detail.

Data source for training
The 1000 Genomes Project (1KGP), launched in 2008, 
has collected and published whole-genome sequence 
(WGS) data to enhance our understanding of the genetic 
contribution to human phenotypes [23]. The New York 
Genome Center (NYGC) used 3202 samples from this 
project to conduct whole-genome sequencing at 30X 
coverage, followed by variant calling, and has made the 
data publicly available [29]. We excluded one individual 
who was reported as admixed of two population groups, 
reducing the number of individuals to 3201, each of 
whom was assigned to a single population group from the 
26 different population groups used in the study (Fig. 1a). 
From the 88 million genetic variations (SNPs, insertions 
and deletions, and structural variants) present in the 
data, we only used 70 million autosomal SNPs. 1KGP 
was chosen as the training data because it is the largest 
publicly available high quality WGS data with detailed 
racioethnic population group labels. We also examined 
the sensitivity of the model predictions to changes in the 
training data, as illustrated in Supplementary Fig. 2.

Data pre‑processing
To identify the ancestry-informative SNPs, we discarded 
SNPs where the most common genotype within a popu-
lation was the same across all 26 population groups. This 
reduced the number of SNPs from approximately 70 mil-
lion to 4.5 million; a set that we refer to as the ancestry-
informative SNPs. Across the 3201 individuals, each of 
these SNPs was either the reference genotype (e.g. A) or 
a specific alteration (e.g. A to a C mutation). We did not 
see multiple alternative alleles in the dataset for a given 
SNP. Our procedure for reducing the number of SNPs 
may throw out SNPs that are unique to a particular group 
(and therefore informative about ancestry) but are not 
the most common genotype within the population. Nev-
ertheless, we enforced this rule to minimize computa-
tion without comprising the accuracy of our inference. 
At least 74 individuals were included in each population 
group (geographic distribution shown in Fig. 1a and the 
numbers are listed in Supplementary Table 1).

As shown in Fig.  1a, the 26 populations can also 
be grouped by 5 different geographic regions: Africa, 
America, East Asia, Europe, and Southeast Asia, where 
“region” is defined as the regional ancestry, not where the 
individuals reside. For example, several populations in 
the United Kingdom, such as Indian Telugu and Sri Lan-
kan Tamil, would be from Southeast Asian ancestry, not 
European.

https://github.com/hormoz-lab/scAI-SNP


Page 4 of 17Hong et al. BMC Methods            (2025) 2:10 

Fig. 1  Schematic of model training and inference. a The geographic locations of the 26 populations in the 1KGP dataset are shown 
in the truncated world map, with 5 color codes based on geographic regions. The right side shows the population description and three letter 
code that will be used throughout the paper. b Schematic of Model Training is shown on top. The training data is shown as a matrix of 3201 
individuals by 70 million genotypes at SNP sites. We first subset the SNPs to keep 4.5 million ancestry-informative SNP sites as described in Sect. 2.2 
of Methods. We then conducted PCA to reduce the dimensionality to 600 principal components (PCs). Model prediction is shown on the bottom. 
An example of a user input of 1 sample is shown although users can input an arbitrary number of samples. The input data is first centered using 
the mean vector from the training data, imputed for sites with missing genotypes, and scaled appropriately as described in Sect. 2.5 of Methods. 
Convex optimization is used to compute the contributions of the 26 population groups to the ancestry of the input data with the constraint 
that the contributions are non-negative and sum to 1. c The confusion matrix of classification results after splitting the 1KGP data into training-test 
(80–20%) is shown. Each test input is classified as the member of the population group with maximum contribution to that individual. Missing data 
was simulated by randomly removing 99% of the SNP sites from the data. Classification accuracy with 99% missing data is 86% (with no missing 
data, the accuracy is 89%), and all the misclassifications except for three cases are still within the same geographic region. Supplementary 
Fig. 1 shows the confusion matrix generated with different degrees of missing genotypes
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Next, we converted the genotypes of the 4.5 million 
ancestry-informative SNPs for each individual from a 
vector of base-pairs to a vector of numbers. For a given 
individual and a given SNP, if both base pairs (mater-
nal and paternal alleles) matched that of the reference 
genome GRCh38, we assigned a 0. If only one of the 
base pairs (either from the maternal or paternal allele) 
matched the reference, we assigned a 0.5. Otherwise, 
when both did not match the reference, we assigned a 1. 
This numerical conversion does not discard any infor-
mation about the mutations, as described previously, 
we either see the reference or a single alternative allele 
for each SNP in the in the dataset. This is a reasonable 
numerical representation because the genotypes that an 
individual inherits are linear combinations of the geno-
types of their parents.

Having obtained a numerical representation for the 
SNPs for every individual, we then centered the data. 
To do so, we thought of the data as a 3201-individual 
by 4.5-million SNP matrix. We computed the average of 
each column, corresponding to the average value of each 
SNP across the 3201 individuals. We then subtracted the 
average value of each column from all the entries of that 
column.

Inference algorithm
In addition to the following description, the model train-
ing and inference algorithm are depicted visually in 
Fig.  1b. scAI-SNP leverages existing methods (principal 
component analysis and convex optimization) to infer 
ancestry.

Principal component analysis (PCA).
We used Principal Component Analysis (PCA) to 

transform the high-dimensional data (3201 individuals 
by 4.5 million features) into a lower-dimensional data of 
3201 individuals by fewer features using an orthogonal 
transformation followed by truncating the feature space. 
This step is essential to reduce the computational bur-
den when using the model to compute predictions for 

user-provided inputs. However, conducting PCA on 4.5 
million features is challenging because we have to com-
pute a 4.5 million by 4.5 million mutation covariance 
matrix and then diagonalize that matrix. Instead, we 
computed the covariance across individuals which is a 
3201 by 3201 matrix (referred to as the Gram matrix) and 
used this matrix to compute the principal components in 
the 4.5-million-dimensional feature space.

The centered data matrix X is n by p, where n is the 
number of individuals (3201 in this case), and p is the 
number of SNPs sites (4.5 million in this case). We can 
use singular value decomposition to express the data 
matrix as:

where columns of U are the eigenvectors of the gram 
matrix ( XXT ), columns of V  are the eigenvectors of the 
covariance matrix ( XTX ), and D is a n by p matrix in 
which the first (n− 1) diagonal entries are square-roots of 
the eigenvalues of XXT or XTX and all other entries are 
zero. Our goal is to compute V ′ , a truncated version of V  
with the first 600 eigenvectors of the mutation covariance 
matrix, to conduct PCA. Because directly computing V  
is computationally expensive, we first compute U , the 
eigenvectors of the 3201 by 3201 Gram matrix. We keep 
the first 600 eigenvectors with the largest eigenvalues to 
construct a subset of U , U ′ , as a 3201 by 600-dimensional 
matrix. D′ is a diagonal 600 by 600-dimensional matrix, 
where the diagonal entries are the first 600 largest eigen-
values. The choice of truncating to 600 dimensions is 
based on a sensitivity analysis shown in the Supplemen-
tary Table 2.

We can express V ′ in terms of U ′,

where we have used the fact that (U ′)TU ′ = I and (D′)−1 
is the inverse of matrix D′ . It follows,

X = UDVT

(V ′)T = (D′)−1(U ′)TX

V ′ = XTU ′(D′)−1

(See figure on next page.)
Fig. 2  PCA of the training data and the heterogeneity within each population group. a The first two principal components of the 1KGP data. 
The marker shape and colors capture the 26 different population groups, with a different color used for each of the 5 different geographic 
regions. The PCA plot shows a clear separation of the points by the 5 different regions. However, the PCA plot also shows the admixed nature 
of the populations and that many of the population groups form a continuum of points as opposed to distinct clusters. b After splitting the data 
into training-test (80–20%), we converted each test data point to a vector in the 600-dimensional PCA space obtained from the training data. 
We used convex optimization then to construct the closet possible vector to the test vector using a linear combination of the mean vectors 
of the 26 population groups, where the coefficients of the linear combination were constrained to be non-negative and sum to 1. For each test 
data point, we have plotted the cosine similarity of the vector corresponding to the test data point and its reconstruction. The values range from 0 
to 1, where 1 indicates that the data can be perfectly explained by the mean PC vectors of the 26 population groups. Lower values of similarity 
result from heterogeneity of the data within each population group and lack of population groups in the training data that would explain this 
heterogeneity through admixture
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Fig. 2  (See legend on previous page.)
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V ′ can be used to project a vector in the original 
4.5-million-dimensional feature space to a 600-dimen-
sional space. We will use vectors in this lower-dimen-
sional space to maps vectors of alleles to their ancestry 
[31].

Ancestry inference
To infer ancestry, our algorithm takes as input the data 
after PCA (600-dimensional input) and outputs the con-
tributions of the 26 population groups to the ancestry of 
the input sample. This approach is appropriate because 
an individual’s ancestry can belong to more than one of 
the population groups.

The predicted ancestry is computed by solving the fol-
lowing constrained optimization problem using convex 
optimization:

The parameters of interest, X , is a 26-dimensional non-
negative row vector whose elements sum to 1, making it 
a vector of probabilities. Xg is the contribution of popu-
lation group g to the input. M is a 26 by 600 matrix in 
which row i is computed by projecting all the individu-
als in population group i in the training data after pre-
processing into the PC space and averaging them. M 
then captures the average representation of each popu-
lation group in the training data. P′ is a row vector of 
600-dimensional user-input that has been pre-processed 
and projected into the PC space of the training data. Note 
that this optimization can be generalized for X to be a 
matrix of n row vectors, with n rows of user-input vectors 
( P′ ) in a form of row matrix in the scAI-SNP method. The 
optimization problem that we solve is finding the linear 
combination of the vectors representing each population 
group in the training data that most closely resembles 
the input vector with the coefficients constrained to be 
non-negative and summing to 1. We implemented con-
vex optimization using package cvxpy (version 1.3.2) in 
Python 3.7.4 with a L2 norm to solve for vector X [32]. 
In cases where we aimed to classify the input to only one 
population group, we selected the population group g for 
the input with maximum Xg.

Imputation
Because scRNA-seq data is expected to be sparse, we 
need to account for missing genotypes by imputation. 
To test our imputation approach, we simulated various 
degrees of missing data. We first split the data randomly 
into 80–20% proportion of training and test data, respec-
tively, and implemented varying amounts of missing data 

min�XM − P′�2,X ∈ R26
,X ≥ 0,

26

g=1

Xg = 1

in the test data (90%, 99%, and 99.9% of the allele calls for 
ancestry-informative SNPs missing). To implement miss-
ing data, for each test datapoint, we randomly selected 
a subset of SNP sites and marked them as missing. This 
subset can vary from one datapoint to another. We first 
imputed all the missing values of the SNPs with the cor-
responding genotype mean for each SNP site in the train-
ing data and then centered the data. This ensures that the 
missing SNP sites are non-informative for dimensional-
ity reduction and classification. After PCA projection, we 
corrected for the missing data by multiplying the inverse 
of the proportion of the observed data (for example a fac-
tor of 100, for 99% missing) to scale the principal compo-
nents. Supplementary Fig. 3 shows the first four principal 
components for the original test data and the imputed 
and corrected test data. Even with 99% of data missing 
at random, the principal components in the first four 
dimensions are quite similar to those of test data. We 
computed the downstream effects of missing data on the 
inference accuracy and demonstrate them in Fig. 1c and 
Supplementary Fig. 1.

Number of principal components
To determine the ideal number of principal compo-
nents to use, we conducted a sensitivity analysis in 
which we split the 3201 individuals into training and 
test sets at random (80–20% split) and conducted 
dimensionality reduction and classification with vary-
ing numbers of principal components. As shown in 
Supplementary Table  2, using the first 600 principal 
components is sufficient as the inference accuracy does 
not increase significantly with additional principal 
components.

Genotyping
Users may use their own genotyping algorithm to pre-
pare inputs for scAI-SNP. The list of 4.5 million SNP sites 
and their information is provided as a text and Browser 
Extensible Data (BED) file in the scAI-SNP GitHub page 
[28]. To genotype SNP sites in single-cell datasets, we 
extended SComatic. Specifically, users can directly use 
SComatic to readily prepare their own single-cell data for 
scAI-SNP. SComatic conducts variant calling of the given 
4.5 million sites with various requirements to confidently 
assign a genotype for each site. It requires 5 reads at min-
imum for proper genotype extraction, and if the variant 
base calls to read depth ratio is less than 0.1, the site is 
considered to be homozygous reference (0/0). Similarly, if 
the ratio is greater than or equal to 0.1 but less than 0.9, 
the SNP is considered to be heterozygous mutation (0/1) 
and homozygous mutation (1/1) if the ratio is greater 
than or equal to 0.9.
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Data sources for testing
Bone marrow dataset
We obtained bone marrow aspirates from 5 healthy indi-
viduals (BM_ID1 to BM_ID5) of diverse backgrounds. 
These healthy donor samples were purchased as de-
identified samples from the Boston Children’s Hospital. 
Mono-nuclear cells were isolated from each sample and 
processed as previously described in Egeren et  al. [30]. 
We then used “Chromium Single Cell 3′ Library & Gel 
Bead Kit v3” (10x Genomics, #1000075) and followed 
the Chromium Single Cell 3′ Reagent Kit v3 user guide 
(10x  Genomics, CG000183 Rev A) to generate scRNA-
seq libraries. In addition to these 5 samples, we used 
scRNA-seq data and WGS profiling of bone-marrow 
cells from a previous study on JAK2-mutant myelopro-
liferative neoplasms (MPN) [30] as samples BM_ID6 
and BM_ID7. The WGS had an average depth of 32x. For 
BM_ID4 to ID7, CD34 positive cells were enriched from 
the mono-nuclear cells and used to generate single-cell 
libraries. To call the alleles for the ancestry-informative 
SNPs in the WGS data, we used Strelka2 and set a mini-
mum genotype quality (Phred score) of 20 or higher with 

a depth of 3 reads or higher. The ancestry-informative 
SNPs for the samples BM_ID1 to BM_ID7 are available 
for download on the Hormoz Lab GitHub page [28].

Heart single‑cell dataset
A study of cardiovascular disease that sought to charac-
terize genetic heterogeneity of heart cells conducted sin-
gle-cell RNA sequencing of 14 donors with unremarkable 
cardiovascular disease history [31]. CD45 positive cells 
were enriched from various regions of the heart, pro-
cessed using the 10x Genomics platform, and sequenced 
using HiSeq 4000 (Illumina) and NextSeq 500 (Illumina) 
with a minimum depth of 20,000 to 30,000 read pairs per 
cell. Each sample had about 31,600 cells on average. Our 
study used 76 samples that had at least 20,000 ancestry-
informative SNPs detected, which were sampled from six 
different regions of the heart.

GTex dataset
As part of the Genotype-Tissue Expression (GTEx) pro-
ject, a study produced snRNA-seq profiles of eight tis-
sue types from 16 donors [32]. Each of these snRNA-seq 

Fig. 3  Validation of scAI-SNP for ancestry inference. a Inferred ancestry from single-cell RNAseq data of bone marrow mononuclear cells from 5 
donors with known self-reported race. The vertical bar plots depict the predicted contribution of each of the 26 population groups to each donor. 
These probabilities are plotted again in horizontally stacked bar plots on the right in a more succinct form. The percentages on the right side 
are the fraction of the 4.5 million ancestry-informative SNP sites detected in each sample. b Same plots as in (a) for 2 samples from donors who 
self-reported as White. Ancestry inferred from whole genome sequencing of DNA extracted from the peripheral blood of these donors yielded 
results consistent with those from scRNA-seq samples
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samples has about 13,700 nuclei with 1,500 reads per 
nucleus on average. On average about 1.35% of the ances-
try-informative SNP sites were detected in the data. We 
used 10 samples from 4 donors that had at least 20,000 
detected sites.

Ovarian cancer MSK SPECTRUM dataset
We analyzed scRNA-seq data from 160 multi-site pri-
mary and metastasized tumor tissues originated from 42 
patients with high-grade serous ovarian cancer (HGSOC) 
[33]. This dataset also had matched WGS data for normal 
peripheral blood mononucleated cells and tumor cells. 
Chromium Single-Cell 3’ Reagent kit v3 (10x Genom-
ics) was used to sequence the data. We used 268 sam-
ples from 26 sites and 41 patients in total. 6 samples that 
had fewer than 20,000 ancestry-informative SNP sites 
detected were discarded.

Pan‑tissue scATAC‑seq dataset
The pan tissue scATAC-seq data was generated from a 
study that created a cell atlas of cis-regulatory elements 
[34]. The study team conducted sci-ATAC-seq, a modi-
fied scATAC-seq that uses combinatorial indexing, with 
92 samples from 30 tissue types [35]. We used 66 samples 
from 4 donors that were processed and used in the SCo-
matic study [24]. As with the other datasets, low-quality 
scATAC-seq samples, which had fewer than 20,000 of 
the 4.5-million ancestry-informative SNP sites detected, 
were discarded (47 samples out of 66 representing 22 tis-
sue types passed this quality control).

Results
We trained scAI-SNP on the 1KGP data as described 
in Methods. Briefly, the data contains 70 million SNPs 
across 3201 individuals who belong to one of 26 popula-
tion groups (Fig. 1a). We identified a subset of 4.5 million 
SNP sites that were informative for ancestry inference 
(the most common allele within each population group 
was not the same across all the groups) and captured each 
individual’s genetic information into a vector of alleles of 
these 4.5 million SNP sites. We then used principal com-
ponent analysis (PCA) to reduce the dimensionality of 
the allele space from 4.5 million to 600. To make an infer-
ence, the user provides an input vector corresponding to 
the alleles of the 4.5 million SNP sites for a given sample. 
This input can contain missing values if some of the SNP 
sites were not genotyped. Our algorithm replaces the val-
ues of the missing SNP sites with the mean values from 
the training set. The prediction is computed by multiply-
ing this input vector by a 4.5 million by 600-dimensional 
matrix to obtain the projection of the input vector to 
the 600-dimensional PCA space. We appropriately scale 
the resulting principal components to account for the 

missing data by multiplying by the inverse of the propor-
tion of the observed data (for example a factor of 100, for 
99% missing). We then use convex optimization to find 
the linear combination of the mean vectors of each popu-
lation group that best approximates the input vector. We 
constrain the coefficients of this linear combination to be 
non-negative and sum to 1. The resulting 26-dimensional 
output corresponds to contribution of each of the 26 
population groups to the donor from whom the sample 
was obtained (Fig. 1b).

To validate scAI-SNP, we first generated synthetic test 
data from the 1KGP dataset itself. We split the data-
set into a training-test set (80–20% split) and used the 
training set to train the model. We implemented miss-
ing alleles in the test data by dropping the value of 90%, 
99%, and 99.9% of randomly chosen SNP sites for each 
test data point. With no missing data, the accuracy was 
89%, which dropped to 86% with 99% of the data missing 
(Supplementary Fig. 1 and Fig. 1c). Therefore, the predic-
tions are remarkably robust to missing data. Importantly, 
the incorrect predictions of the model are still consistent 
with expected human demographics and migration pat-
terns. For example, as shown in Fig. 1c, individuals from 
the ASW (African American in the Southwest of the 
United States) group are sometimes mistakenly inferred 
to be from the ESN (Esan, Nigeria) and the YRI (Yoruba 
in Ibada, Nigeria) groups. Similarly, individuals from the 
GBR (British, England and Scotland) group are mostly 
attributed to CEU (Northwest European Ancestry, the 
United States). Similarly, CHS (Han Chinese South) pop-
ulation and CHB (Han Chinese in Beijing) populations 
also demonstrate similarities and mixtures. From known 
migration histories of these populations, such predictions 
errors are not necessarily biological and can potentially 
be attributed to admixtures and limitations in the self-
reported ancestry in the 1KGP data. We reasoned that 
a more complex model with higher accuracy will most 
likely overfit the 1KGP dataset and not generalize as well. 
Additionally, our linear model correctly infers the ances-
try of mixed individuals (Supplementary Fig.  5). There-
fore, we proceeded with our simple linear fit for ancestry 
inference. An alternative approach would have been to 
remove the recently admixed populations (such as ASW) 
from the inference or to predict ancestry up to the 5 
geographic regions. We decided against this approach 
because, as we discuss in more detail in the Discussion, 
the predicted ancestry can also be used as a proxy for 
other contexts for an individual, such as environment 
and socioeconomic status. Therefore, we decided to pre-
dict the contributions of all 26 populations groups in the 
1KGP dataset including the recently admixed population 
groups.
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To determine the limitation of our method, namely 
approximating the ancestry of an individual as a linear 
combination of the mean of the 26 population groups 
in the 1KGP dataset, we first set out to characterize the 
heterogeneity in ancestry of individuals within the same 
population group. To do so, we plotted the first two prin-
cipal components of the 3201 individuals in the 1KGP 
dataset. As shown in Fig. 2a, the PCA plot shows distinct 
groups that correspond primarily to the 5 geographic 
regions sampled. However, as previously reported [11], 
we observe heterogeneity within each population group 
and that many populations form a continuum of points 
as opposed to distinct clusters. To quantify the degree 
of heterogeneity in each population group, we split the 
1KGP dataset to a training and test datasets (80–20% 
split) and computed the principal components only using 
the training data. We then computed the similarity of the 
test points to the mean of their population group by com-
puting the cosine similarity between the vector corre-
sponding to test point in the PC space and the mean of all 
vectors in the training data in the same population group 
as the test point (Supplementary Fig. 4). A value close to 
1 indicates a high degree of similarity whereas a value 
close to 0 indicates low similarity. Certain population 
groups, particularly those with American and Southeast 
Asian ancestry, exhibited high heterogeneity in that many 
individuals in those population groups had low similarity 
to the population mean.

We reasoned that some of this heterogeneity could 
be explained by admixtures between the 26 population 
groups present in the training data. To remove this con-
tribution from the heterogeneity measure, we used scAI-
SNP to obtain the closest approximation of each test 
point as a linear combination of the mean vectors of the 
26 population groups. Figure 2b shows the cosine similar-
ity between each test vector and its best approximation. 
Although the level of heterogeneity decreased, individu-
als from American and Southeast Asian ancestry are still 
poorly approximated as linear combinations of the mean 
vectors of the 26 population groups, most likely because 
these groups are admixtures with populations groups 
other than the 26 used in the training data. Therefore, 
the inferred ancestry labels for these population groups 
(such as CLM, Colombian in Medellin, Colombia, and 
PJL, Punjabi in Lahore, Pakistan) should be interpreted 
with caution because of the high degree of heterogeneity 
in the training data. We propose ways to supplement the 
1KGP dataset in the Discussion section. Nevertheless, for 
many applications our algorithm is sufficiently accurate 
especially when inferring up to the 5 primary geographic 
regions.

To test the accuracy scAI-SNP on single-cell data and 
on individuals outside of the training data, we collected 

bone-marrow biopsies on 7 individuals with self-reported 
race (3 White, 1 Black, 2 Asians, and 1 Indian; Methods). 
We performed single-cell RNA sequencing of bone mar-
row mono-nuclear cells (MNCs) from all these samples 
and applied scAI-SNP to the data.

As shown in Fig. 3a, the inferred ancestry of each sam-
ple is consistent with the self-reported race. To determine 
whether scAI-SNP predictions from sparse single-cell 
data is comparable with predictions from whole genome 
sequencing, we obtained WGS data from peripheral 
blood of 2 of the 7 individuals. The 4.5 million SNP sites 
in the WGS data was genotyped using Strelka2 (ver-
sion 2.9.10) [36]. We obtained allele calls for 99.3% and 
97.6% of the 4.5 million ancestry-informative SNP sites of 
the 2 donors from WGS data compared with 13.0% and 
7.43% obtained from their single-cell data respectively. 
As shown in Fig.  3b, the inferred ancestry of these two 
individuals from single-cell RNAseq data agree with that 
inferred from WGS data despite the sparsity of the sin-
gle-cell data. Taken together, scAI-SNP provides accurate 
inference of ancestry from single-cell RNAseq data that is 
consistent to that inferred from WGS data.

Next, we set out to determine whether scAI-SNP can 
infer ancestry from scRNA-seq data from a wide variety 
of cell types and tissues. To do so, we applied scAI-SNP 
to scRNA-seq data from the Heart Cell Atlas dataset [31]. 
We used data from 14 individuals who had between 3 
and 6 scRNA-seq samples (78 in total) from cells sampled 
from different regions of the heart (Fig. 4 and Methods). 
These samples had on average ~ 31,600 cells and were 
sequenced with a minimum depth of 20,000 to 30,000 
read pairs per cells. We detected on average 2.1% of the 
4.5 million SNP sites in these samples. 2 samples that had 
fewer than 20,000 sites (or 0.44% site detected) were not 
used for further analysis. Figure 4a shows the predicted 
ancestry for each donor across all their samples as a pie-
chart. The inferred ancestry was consistent across differ-
ent samples from the same individual. The fact that 13 
out of the 14 individuals in the Heart Cell Atlas Dataset 
is of European ancestry highlights the need for inferring 
ancestry of single-cell data to ensure diversity of atlases. 
To further validate this finding across more diverse tis-
sues, we inferred ancestry of individuals in the GTEx 
dataset who had multiple single-nucleus RNA sequenc-
ing (snRNA-seq) data obtained from different tissues 
[32]. Each snRNA-seq sample had about 13,700 nuclei 
with 1,517 reads per nucleus on average, and we detected 
about 1.35% of the SNP sites and discarded the samples 
that didn’t have at least 20,000 ancestry-informative SNP 
sites detected. We applied scAI-SNP to data from indi-
viduals that had samples from multiples tissues (4 indi-
viduals with 10 samples) as shown in Fig. 4b. Again, we 
observed consistent inferred ancestries across different 
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tissues from the same individual. Taken together, scAI-
SNP can consistently infer ancestry from scRNA-seq and 
snRNA-seq data from cells from a wide variety of tissues.

To determine whether we could accurately infer ances-
try from scRNA-seq data of cancer cells, we analyzed the 

MSK SPECTRUM Ovarian Cancer dataset [33]. From 
this dataset, we used data from 41 individuals who had 
had 3 to 12 scRNA-seq samples and corresponding WGS 
data (from both tumor and normal cells). The scRNA-
seq samples contained about 17,100 cells on average and 

Fig. 4  scAI-SNP results from single-cell RNA sequencing of a diverse set of cell types and tissues. a The inferred ancestry of 14 individuals (H_ID1 
to H_ID14) from their scRNA-seq data in the Heart Cell Atlas dataset. Each individual had multiple samples obtained from different regions 
of the heart as shown approximately in the schematic. The pie charts show the distribution of classifications (population group with the highest 
predicted probability) across all the samples for each individual. The number of samples for each individual is shown in the center of the pie chart. 
For individuals H_ID5 and H_ID10, the detailed predictions are shown as the horizontally stacked probability plots, where the left labels indicate 
which region of the heart was sampled and the right shows the fraction of ancestry-informative SNP sites that were detected. b The inferred 
ancestry of snRNA-seq data from the GTEx dataset. The labels on the left side of the horizontal bar plots show the region from which the sample 
was obtained with the legend included with the simplified human schematic. The schematic is an approximation and does not show the exact 
regions from which the samples were obtained
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had about 2.0% of the ancestry-informative SNP sites 
detected. As before, 6 samples that had fewer than 20,000 
ancestry-informative SNP sites detected were discarded. 
As shown in Fig.  5, all 41 individuals had consistent 
ancestry inferred up to the 5 geographic regions. For 39 
out of the 41 individuals, WGS data of both tumor and 
normal cells were available. Among these 39 individuals, 
36 individuals’tumor and normal cell ancestry were con-
sistent (the population group with the highest inferred 
probability was the same). The predicted ancestry of the 
three individuals that were inconsistent between tumor 
and normal cells were still within the same geographic 
region. Similarly, in the cases where the most probable 
inferred ancestry group from single-cell sample did not 
match that of the WGS normal data, the most prob-
able groups were still within the same geographic region. 
Therefore, scAI-SNP can accurately and consistently infer 
ancestry from both healthy and tumor samples.

Finally, we set out to determine if scAI-SNP could be 
applied to scATAC-seq data. To do so, we applied our 
algorithm to scATAC-seq data derived from cells col-
lected from various types of tissues from 4 donors in 
the Pan-Tissue scATAC-seq dataset [34]. The samples 
contained on average roughly 114,800 cells and were 
sequenced to a depth of 6,500 raw reads per nucleus on 
average. As before, low-quality scATAC-seq samples, 
which had fewer than 20,000 of the 4.5 million SNP sites 
detected, were discarded. As shown in Fig. 6, the inferred 
ancestry using scAI-SNP was consistent across all tissues 
for each of the donors. The inferred ancestries, up to the 
5 major geographic regions, were consistent across all tis-
sue types across all samples, as was the contribution of 
each of the 26 population groups to each sample quali-
tatively. Taken together with the results seen with other 
datasets, scAI-SNP can be applied to different modalities 
of the single-cell data, including scATAC-seq data.

Discussion
Inferring ancestry from single-cell data is essential for 
constructing single-cell atlases that reflect human diver-
sity. Here, we introduced a tool, called scAI-SNP, that 
takes in single-cell genomic data as input, extracts alleles 
from 4.5 million ancestry-informative SNP sites, and out-
puts a distribution over 26 ancestry groups, which rep-
resents the inferred contribution of each ancestry group 
to the donor of the sample. We showed that scAI-SNP 
is accurate and robust to the sparsity present in single-
cell data, and can be applied to samples from various cell 
and tissues and even cancer cells sequenced using WGS, 
scRNA-seq, snRNA-seq, and scATAC-seq.

The key feature of scAI-SNP is the simplicity in its 
ancestry inference. We used the data from 3201 individu-
als in the 1000 Genomes Project (1KGP) to identify 4.5 

million ancestry-informative SNP sites to learn linear 
transformations followed by convex optimization that 
converts an input allele vector of 4.5 million dimensions 
to a vector of probabilities over the 26 ancestry groups. 
This simple approach is justified because population 
admixtures (e.g. individuals with ancestors from different 
population groups) can be thought of as linear combi-
nations of their parental groups. In addition, this simple 
approach minimized the risk of over-fitting to the train-
ing data. This is especially important because the ground 
truth in 1KGP comes from self-reported ancestries and is 
therefore limited in its accuracy.

Our approach has certain limitations. First, our method 
ignores any linkage disequilibrium between the ancestry-
informative SNP sites. Accounting for linkage disequilib-
rium can significantly improve the ability to distinguish a 
true mutation from a sequencing error in single-cell data 
as shown recently by Dou et al. [25], where the authors 
use their calls for germline mutations to validate global 
ancestry inference using PCA and carry out local ances-
try inference using RFMix [18]. Although linkage dise-
quilibrium is very informative if the goal is to call specific 
mutations with high confidence, for example for genetic 
association studies, we reasoned that for global ances-
try inference the redundant information provided by the 
millions of ancestry SNP sites allow us to safely ignore 
linkage disequilibrium and use a much simpler approach.

Another important limitation of our work is that we 
cannot distinguish uncertainty in model prediction from 
admixtures of population groups. This is because the out-
put of the model is a probability distribution over the 26 
population groups in the training data (1KGP). A com-
pletely uninformative prediction would correspond to 
a uniform distribution over all 26 ancestry groups. An 
intermediate prediction of a distribution with significant 
weight on a subset of the ancestry groups can be inter-
preted both as model uncertainty across those groups 
or an individual who is an admixture of those groups. 
This issue is especially pronounced when the individ-
ual is from an ancestry group that is not one of the 26 
population groups in the training data. Therefore, the 
biggest limitation of our method is the limited nature 
of our training data. 1KGP data has been analyzed for 
several studies of ancestry, but its 26 populations do not 
represent an ideal sample of human diversity around 
the globe because they do not include the full range of 
genetic diversity. Our analysis of test data points cosine 
similarity to the closest linear combination of the mean 
vector of the 26 population groups highlights this. The 
heterogeneity in many population groups is consistent 
with missing population groups and that labels for many 
population groups (such as CLM, Colombian in Medel-
lin, Colombia, and PJL, Punjabi in Lahore, Pakistan) can 
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Fig. 5  scAI-SNP results from scRNA-seq and WGS of cancer cells. Pie charts show the inferred ancestry (ancestry group with the largest predicted 
probability) across all the scRNA-seq tumor samples for a given individual across 41 individuals in the MSK SPECTRUM Ovarian Cancer dataset. The 
number of samples for each individual is shown in the center of the pie chart. The schematic shows approximately the different regions from which 
the samples were obtained. For individuals O_ID01, O_ID07, O_ID36, and O_ID41, the stacked predicted probabilities are shown along with the 
labels on the left that indicate which tissue was used and on the right that show the fraction of the 4.5 million ancestry-informative SNP sites 
detected in each sample. Note that multiple scRNA-seq samples may originate from the same site. For those 4 individuals, we also show the inferred 
ancestry using their respective WGS of normal and tumor tissues
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be misleading by neglecting the significant heterogeneity 
within those populations. Hence, the users should also 
consider the predicted probabilities at the regional level 
(Africa, Europe, East Asia, Southeast Asia, and America) 
when interpreting the results. In future iterations of scAI-
SNP, we hope include more population from other stud-
ies of human genetic variation [37], and potentially even 
data from All of US and UK Biobank [27]. Nevertheless, 
our simple tool can provide invaluable insight into ances-
try information of single-cell datasets and guide the gen-
eration of single-cell atlases to represent human genetic 
diversity.

Finally, we outline broadly the benefits of ensuring 
diverse ancestry when constructing single-cell atlases. As 
described in this paper, it is rather easy to identify genetic 
variants that are predictive of an individual’s ancestry. 
However, this does not imply that traits, in particular 
neutral traits, can also be predicted from ancestry [38]. 
Intuitively, when we train models that predict ancestry 

from millions of genetic variants (i.e., the ancestry-
informative SNPs defined in this work) we are accumulat-
ing small contributions to ancestry of each variant across 
all the variants. The contribution from each variant is 
positive and can be summed together without cancella-
tion. Although a single variant is not predictive, many of 
them together can make accurate predictions. A trait is 
not like ancestry. The contribution of each variant to a 
trait can be both positive and negative. Therefore, accu-
mulating the contributions of many variants to a trait is 
no more accurate than predicting the trait from a sin-
gle variant. Naively, this argument implies that although 
ancestry can be inferred from genetic variants, ancestry 
itself is not useful for capturing diversity of single-cell 
phenotypes.

There are two reasons why this naive argument is not 
correct. First, rare variants that contribute significantly 
to a particular trait and are present predominantly in 
specific population groups due to hard sweeps such as 

Fig. 6  scAI-SNP consistently infers ancestry from scATAC-seq data from various types of tissues. Inferred ancestries of 4 donors’ scATAC-seq samples 
from various tissues are shown in the horizontal stacked plots. On the left side of the stacked bars are the description of tissues from which samples 
were collected and on the right side are the fraction of the 4.5 million ancestry-informative SNP sites detected in each sample. Each donor’s inferred 
ancestry across all of their samples is also summarized in the pie charts in the middle
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selection or drift do occur and are clinically important. 
Examples are polymorphisms associated with Lactase 
persistence [39], Duffy allele [40] and G6PD deficiency 
that reduce the risk of malaria infection [41], and EPAS1 
gene in Tibetans for adaptation to high altitude [42]. In 
the clinic, some variants are predictive of propensity for 
disease, such as the 8q24 variant, which is associated 
with increased risk of prostate cancer and more preva-
lent in African Americans compared with individuals of 
European ancestry [43]. Such variation across popula-
tion groups may also result in incompatibility of refer-
ence ranges computed using one population group when 
applied to another. For example, blood counts of individ-
uals of European descent are significantly different com-
pared with those of African descent [7]. Taken together, 
single-cell atlases need to incorporate and account for 
rare genetic variants across population groups.

Second, ensuring diversity of ancestry can indirectly 
ensure diversity of environment and socioeconomic sta-
tus of the donors of atlases. For example, consider poly-
genic scores that aggregate the contributions of many 
genetic variants to a trait. The accuracy of polygenic risk 
scores varies significantly with context, such as age and 
income, in addition to ancestry [44]. In the cases where 
context is not recorded, ancestry can act as a proxy for 
environmental and socioeconomic factors. This would 
allow us, for example, to study impact of environment 
on biological traits, elucidating the interactions between 
context and genetic variation. Diversity also allows us to 
remove noise from linkage disequilibrium when associat-
ing variants with traits. This is highlighted by the fact that 
accuracy of polygenic scores decreases when applied to 
individuals with increasing genetic distance to the train-
ing cohort [45]. Ideally ancestry should be supplemented 
with race and ethnicity. Race and ethnicity are even more 
closely correlated with environment and socioeconomic 
status than ancestry, and with other social determinants 
of health such as racism and discrimination [46]. Con-
structing single-cell atlases from donors with diverse 
ancestry, alongside race and ethnicity, should ensure that 
the scientific discoveries made using such as atlases and 
their eventual use in the clinic result in improved and 
equitable health outcomes.
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